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Abstract

Agent Based Modeling systems are being used in increasingly diverse appli-
cations every year. The data sources and agent models used in most of these
systems operate under synchronized views of space and time, avoiding the
need for mediation between scales. However, mediation must be done if sys-
tems are to incorporate models whose scales are not synchronous, an issue
especially pertinent for fields relying on unrelated, externally provided data
sets, as is the case with geostatistical or geopolitical systems. Here we docu-
ment a framework, API, and proof of concept which provides the functionality
needed to mediate between scales of heterogeneous agents. Our solution and
its reference platform (Thinklab) use strict semantic rules and ontology-based
modeling to achieve consistency and reusability.
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Chapter 1

Introduction

This project seeks to develop an efficient, high quality, general purpose solu-
tion which can represent software agents with heterogeneous perceptions of
space and time, and allow them to interact properly and efficiently in simu-
lations. Agents with such heterogeneous scales have differing views of how
space and time are segmented, categorized, and observed. The representa-
tion of internal state and observed state is affected by such views, which in
turn affect how these agents interact with and respond to each other. As a
proof of concept, this system will be contributed as the agent subsystem of
the Thinklab modeling software stack, a semantically driven, open source
infrastructure used for major environmental decision support systems.

1.1 Context

Agent systems in current research fall into two categories: those whose pri-
mary purpose is problem solving, and those whose primary purpose is simula-
tion. In both types of systems, the characteristic traits of the system emerge
from the interactions of individual agents; in many cases, complex system
dynamics emerge from relatively simple agent definitions.
In a problem-solving system, the quality of the emergent behavior of the
system is the measure of success. The selection of individual agents and their
behavior during their life cycles is unimportant, as long as their behaviors
lead to an accurate or effective solution. These systems generally operate
under a (job shop) scheduling paradigm: a number of tasks, sometimes with
deadlines, are allocated to a collection of resources to achieve sometimes
competing objectives.
One example of problem-solving systems is a trading agent system, which
searches for solutions to the multiple-objective, multiple-constraint Trading
Agent problem [51]. This problem is a real-world scenario in which travel
agencies, supply chain variables, auctions, and other constantly varying game
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Chapter 1: Introduction

Feature Existing Systems Our Requirement
Heterogeneous Scales use common base units unrelated units/segmentation
Agents’ Location in Space generally cell-based arbitrary (cells, polygons, etc)
Temporal Semantics uniform time steps arbitrary, per-agent durations
Scale Mediation not necessary automated, configurable solution
Subjective Agent Perception not explicitly modeled API should be provided

Table 1.1: Our itemized requirements as they currently exist in other systems, and
as we would require

scenarios must be navigated within time constraints. Another example is an
ant-colony system for solving the Traveling Salesman problem.
In a simulation system, individual behaviors of the agents are chosen so as to
match reality, and the consequences of behavior on the higher-level system
are the object of study. Because of this difference, the system is designed
with different constraints. Agents are modeled to correspond to a real-world
behavior, and the system must implement that behavior as it is modeled.
The system cannot select different agent types to provide better performance;
rather, the system must provide a performant environment within which ar-
bitrary agents can be defined with semantic accuracy and simulated with
precision.
Because our system is built for general-purpose modeling, we are tasked with
the latter requirements. We are required to ensure that the agents modeled
in our system are a fair reflection of the real world. As a consequence, we
are also required to accept data sources and agent semantics which reflect
subjective views of space and time.
A speed/quality trade-off exists, as in most systems. The trade-off in our
system can be managed by the modeler by selecting higher or lower quality
scale mediation strategies, more or less detailed data sources, etc. Our goal is
to fulfill these constraints efficiently by implementing an efficient modeling
environment, rather than selecting the optimal agent type(s) for a given task.

1.2 Motivation

Problem solving and simulation systems differ in some ways but can share
design and implementation techniques. The primary difference between the
two is that the measure of success of a problem solving system is the accuracy
of its final result, whereas a simulation system is measured by the accuracy
of the individual behaviors of the agents in the system.
All agent simulation systems known to us at the time of writing use a view of
space/time which is inherently consistent (see Figure 1.1). In systems with
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Chapter 1: Introduction

consistent space/time, agents which operate at different scales share common
dimensional units and have a lowest common denominator (which is the base
unit for the system). In this way, agents can easily translate values between
themselves. No complex scale mediation semantics would be needed in these
systems beyond simple scaling functions.
However, we would like to loosen this constraint so that our system is able to
incorporate raw data or models using arbitrary scales. Strict semantics is the
guide for agent definition, and accordingly agents may have different scales
with no relation to each other. The representation chosen for space and time
should not be forced to agree in simultaneously represented agents. It is pos-
sible that elevation data is represented using meters over a square-kilometer
sample grid, rainfall data is aggregated in inches over square miles, and soft-
ware agents reason and navigate using subjective categories over polygons
defined in latitude/longitude units. In this case, no single cohesive grid or
measurement system exists, even though they all represent semantically com-
patible concepts of earth’s surface.
In the real world, as agents (robots) interact with each other, different inter-
nal representations are negotiated by automatic, usually unconscious, transla-
tion. Differences in perception are usually not obvious to the agents. Creating
a virtual system where these differing internal representations are honored
while computing observed states for all agents, while preserving accuracy
and performance, is a difficult challenge and the main purpose of this work.
In Chapter 3, we identify three main components necessary for a multiple-
scale system: semantics, scale mediation, and negotiation of agent perception.
The scale mediation component is the one with arguably the most serious per-
formance implications. Many academic fields have contributed thinking to
the topic of multivariate data interpolation, from which we draw influence;
2D and 3D image processing, for instance, has been invested in by both in-
dustry and academia. The programming paradigm called Functional Reactive
Programming (FRP) was an inspiration in shaping our thinking about time
as a unique dimension with characteristics not shared in e.g. 3-dimensional
space. FRP was also a rich ground for developing computational models that
deal appropriately with potentially fatal combinatorial explosions.
Other agent-based system designs are discussed in Section 2.1, which includes
ontologies of agent types that exist in these systems. Other academic fields
that contribute to this topic are discussed in the following sections of this
chapter.

1.3 Contributions
In this thesis we describe the following contributions to the current literature:

Modular Scale Mediation Strategy: By using a modular scale mediation
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Chapter 1: Introduction

mechanism, we can fully decouple agents’ subjective scales (views of
space and time, with other dimensions allowed but not implemented).
This allows software agents of arbitrary design to interact with each
other and with various real-world data sets without regard to the scales
used internally by the others. By standardizing our system using formal
ontologies, the scale conversions can be done in context-appropriate
ways without the involvement of agent developers or field researchers.

Globally-Synchronous, Locally-Subjective Time Scales: Time is treated
as a unique dimension which is allowed to differ between agents as the
other dimensions are. The way we implement time also enforces for-
ward causality and synchronous observations, while allowing agents’
individual perceptions and computations to be completely decoupled
from each other’s. This has the advantage of providing a highly paral-
lelizable computation paradigm with explicit synchronization points.

Circular Reference Avoidance: Our time period semantics treat the time-
period boundaries as exclusive-start, inclusive-end, which is opposite
of the predominant inclusive-exclusive model. By doing this, we in-
troduce: 1) an approximation of the real-world temporal delays be-
tween cause and effect, while retaining the simplicity of a temporally-
synchronized simulation; and 2) an outright avoidance of circular ref-
erences in simulated environments.

Efficient and Flexible Agent-State Semantics: By dictating that agents
make observations and decisions at specific instants in time and their de-
cisions lead to agent-states over the intervals bounded by these instants,
we provide a computational model which is very efficient and yet pro-
vides agent-state functions which can express complex, continuously-
changing values that can be observed at any instant during the agent’s
lifetime.

1.4 Outline
The rest of this thesis is organized as follows:
In Chapter 2 we discuss related work in literature which informs the formula-
tion of the various problems we have addressed and the approaches we have
used in our design.
Chapter 3 is a statement of the various problems which must be solved to
create multiple-scale simulations. We also describe two use case scenarios
which exemplify the requirements that a system should fulfill, as well as being
illustrative of the domain and typical uses for which Thinklab is currently
used.
In Chapter 4 we present our semantic model and system design for address-
ing all of the elements from our problem statement. This chapter also gives
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Chapter 1: Introduction

our reasoning for choosing some unorthodox techniques, namely exclusive-
inclusive time periods and globally-synchronous, locally-subjective temporal
scales.
Chapter 5 describes how we have implemented the modules described in
our design. We also discuss our proof of concept which demonstrates the
functioning of the modules.
Chapter 6 concludes with a summary of our work, as well as future work
which we believe could make our solutions more flexible and applicable be-
yond the use cases to which we have limited ourselves.
As is the case with any project which overlaps with multiple disciplines, in
this project we are forced to choose terminology which fits our purposes,
at the possible expense of abusing or stretching definitions in some of the
overlapping disciplines. In the glossary we list the terms which may have
varying interpretations depending on the background of the reader, as well
as some terms whose definitions are simplified for the purposes of this the-
sis. In the latter case, we often draw finer distinctions between concepts in
Thinklab than we express in this thesis because some implementation details
and domain-specific considerations go outside the scope of this work.
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Chapter 2

Related Work

This project aims to contribute to a semantic meta-modeling system, where
the primary issue is scale mediation among heterogeneous agents and data
sources [57, 58, 55, 56]. To accomplish our goal, consistent semantics had to
be developed. Hence, this project primarily overlaps with others in the areas
of semantic agent modeling and multivariate interpolation (which we refer to
as scale mediation). Going forward, the target infrastructure (Thinklab) will
be used for more complex scenarios, and performance and flexibility issues
will most likely surface such that other areas of research are expected to be
beneficial.
The rest of this chapter is organized as follows:
Section 2.1 discusses the agent modeling landscape in literature. This section
places Thinklab into context and motivates its existence by explaining the
assumptions in other systems with reference to our wish list for an ontology-
based modeling platform.
Section 2.2 describes the Functional Reactive Programming paradigm, which
is a primary inspiration for our semantic model of temporal observation and
the progression of agent-states through time. We have also gained insight on
how Functional-Reactive designs can lead to efficient implementation tech-
niques for complex simulated worlds.
In Section 2.3, we discuss the field of Geospatial Interpolation, which most
closely resembles our task of mediating between heterogeneous agent scales
in simulations. This field is useful for us on two levels: 1) it is centered around
the idea of combining geostatistical data sets to form holistic understandings,
which is also Thinklab’s raison d’être; and 2) it emphasizes that not just scales
but also scale mediation strategies must be heterogeneous, which is to say
that a scale translation approach cannot be a one-size-fits-all proposition.
Continuing from above, we introduce Image and Signal interpolation in Sec-
tion 2.4. This section is a simplification of the previous, because image and
signal interpolation are done in well-controlled environments. The simplifi-
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1
2
3

Autonomous Agents
(Possibly heterogeneous)

Shared World

Behavioral Protocols

Figure 2.1: The main components of an agent modeling system

cations allow us to study idealized solutions (generally spline-based vector
representation) as landmarks. We would like to approach the directness of
these approaches in our own work.
Sections 2.5 and 2.6 describe related fields which we have not studied deeply
but leave their application for future work.

2.1 Agent Modeling and Simulation
Thinklab is ultimately an agent modeling system, as the agent paradigm can
be considered a generalization in the field of modeling that can encompass
most other paradigms in use today. Here we describe Thinklab and some
prominent Multi-Agent Systems (MAS) and the main ideas in MAS literature
which had an impact on our work.
Figure 2.1 shows the general components of an agent modeling system. Au-
tonomous agents of possibly heterogeneous type, structure, and internal and
external behavior occupy a shared, simulated world. Their interactions are
mediated by the system through well-defined protocols. The agents’ individ-
ual and group behaviors, the properties of the shared world, and the system
protocols lead to emergent behavior which is more complex than what can be
captured by deterministic models. This property of agent modeling systems
makes it an effective tool for analyzing complex systems of interaction in the
natural sciences, economics, sociology, etc.

2.1.1 Thinklab Modeling Platform

Thinklab is a semantic meta-modeling platform which aims to address the task
of integrated modeling as a reconciliation of strong semantics with modeling
practice. The rationale behind its development is to help achieve advan-
tages (such as modularity, flexibility, validation, and integration of multiple

8
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paradigms and multiple scales) that have remained unrealized in modeling
to this day. To achieve this goal, Thinklab keeps the logical representation
of the modeled world distinct from the procedural knowledge that allows its
simulation. The logical representation is modeled using concepts and rela-
tionships that comprise the Thinklab abstract knowledge base, built around a
set of ontologies that provide a solid foundation to describe what the aspects
of interest of the modeled world are, with no attempt to resolve how they
may be simulated.
In the procedural knowledge base, models are defined that allow users to
produce observations of the concepts contained in the abstract knowledge
base. Models can consist of algorithms or datasets; from the Thinklab point
of view, the two just represent different ways to observe a concept. Both the
abstract and the model knowledge can be expressed using a compact domain-
specific language.
Semantic meta-modeling uses the idea of observation as the unifying theme
to define a general way to model physical objects and phenomena. A model
is seen as a strategy to produce observations of a concept that comes from an
accepted knowledge base. Compatibility of different models as components
of the same computation is guaranteed by the semantic equivalence of the
concept they model, established through standard machine reasoning. When
supported by adequate infrastructure, this approach enables the integration
of many modeling paradigms that are often used and described separately,
for example spatially-explicit to process- and agent-based models, or proba-
bilistic vs. deterministic models. This conceptualization provides a natural
path to reach goals in modeling that have frequently been discussed, but
not demonstrated so far to their full potential, including modular modeling,
multiple-paradigm modeling, multiple-scale modeling and structurally vari-
able modeling.
The Thinklab software stack consists of ThinkQL (TQL), a domain-specific
language, and the Thinklab server, which performs model reasoning and pro-
cessing. Various clients can be used; normally the system is used with the
ThinkCap Eclipse client plug-in. Thinklab aims to allow uncoordinated exten-
sibility of the model base and to be a modular, multiple-scale and multiple-
paradigm modeling infrastructure.
The objects and processes in Thinklab are defined using the OWL ontol-
ogy language [35] in its OWL-DL incarnation that is guaranteed decidable.
Thinklab is delivered with an initial knowledge base consisting of estab-
lished pre-defined ontologies for foundational concepts and for common con-
cepts used in physical modeling and data processing. At the moment, the
DOLCE [19] ontology provides the foundational basis for all specifications,
and the SWEET [41] ontologies from NASA provide an initial base of knowl-
edge that can directly be used for model building. DOLCE and SWEET have
been provisionally aligned by the Thinklab developers.
The basic function of Thinklab is to simulate observations. The semantics
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of the subject of observation (equivalent to agents in multi-agent systems ter-
minology) drives the observation process: data are the literal properties of
the object, while object properties point to other objects. This corresponds
closely to the OWL conceptual model and maps directly to the established
description logics model. A simulation is generally driven by observing one
top-level root subject, leading to a cascading series of sub-observations which
collectively generate a simulated world.
When building a model, the root subject observed and any data known before
any observation takes place (abstracts in DOLCE parlance, including extents
of space and time where the object is located) constitutes a context for any fu-
ture observation, whose result will be constrained to satisfy all the properties
required for the result to be semantically consistent. Because the data usually
contain space and time as topologies (e.g. grid cells or polygons for space; lin-
ear steps for time), any data properties whose state is defined indirectly (for
example through numbers or categories) will have multiple values, in num-
ber corresponding to the Cartesian product of the different states implied by
the topologies adopted. The Thinklab resolution engine uses machine reason-
ing to choose the best modeling strategy in a given context, using the models
and data available in the procedural knowledge base under the guide of the
relationships stated in the abstract knowledge.
The TQL language is used both to define the knowledge base using a model
instruction, which provides semantic annotations of data and algorithms, and
to interrogate it using an observe instruction, which creates observed objects
that are the equivalent of output datasets.
Models can be composed according to context, for instance when a single con-
text spans multiple areas (e.g. when the context spans both land and ocean).
If different models are appropriate in different areas, then these models will
be selected and combined to resolve the same observable concept for an op-
timal overall description.
To generate results from a modeling session, the observe action is called on
a concept or an incomplete object, and Thinklab builds a dependency graph
that corresponds to the observation strategy that can produce the requested
values. The graph is then compiled into a scientific workflow which corre-
sponds to the actual computation. (Scientific workflows are well documented
in literature and are beyond the scope of this thesis [2].) The workflow is com-
piled into bytecode and run on a virtual machine to define the output states
and sub-agents that compose the final dataset delivered to the modeler.

2.1.2 Other Agent Modeling and Simulation Systems

Many other agent-based modeling and simulation platforms exist today for
a wide variety of both general and specific uses. A full review of all sys-
tems is beyond the scope of this thesis. Reviews of have been compiled for
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general-purpose agent systems [1], systems for analyzing land use and cover
change [46], climate change [5], and general environmental informatics [3].
Other special-purpose systems exist; our reviews focus on environmental sys-
tems because Thinklab is currently employed in this domain.
Special-purpose agent systems are commonly built using general-purpose
platforms, and so do not provide any re-usable features beyond what is avail-
able in the underlying platforms. Occasionally they are simple, custom-built
systems, but these also provide very little re-usability. Custom-built systems
will normally be effective at solving only the problems they are built for, and
do not provide solutions or reusable system components for general problems
such as arbitrary-scale semantics and translation.
The main general-purpose agent systems are: SWARM [22, 36, 53] and its
derivative systems such as Repast [42, 43], JADE and other FIPA-compliant
systems [6], NetLogo [54], and MASON [31]. Cougaar [21] is also used in
many research projects, but it is primarily a problem solving system rather
than a simulation system. It does not contain built-in concepts of time, space,
or scale.
Thinklab was designed because no existing system contains all the features
desired by the research team, and none would even be well suited to cus-
tomizing for our purposes because of fundamental assumptions made, or core
design principles used. Typical problems which exist in other agent systems
are:

• They use I/O files instead of data stores, and other fixed, non-adaptive
structures.

• Agent concepts which do not align with our purposes, whether too sim-
ple (FLAME), too complex (JADE), or with architectures that do not
work well for us.

• Time and space are only abstract (machine) values without inherent
semantics, or are not capable of expressing non-synchronous or relative
values per agent.

• They are opaque in general, not lending themselves to usability or ex-
tensibility.

Thinklab is designed from the ground up to take shortcomings from existing
systems into consideration and provide a good foundation of agent simula-
tion features, a plug-in interface allowing future expansion, and an effective
path to sharing of resources, reusability and modularity aimed to serve a
distributed and diverse user community.
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2.1.3 Ontology of Agents in Literature

This section is a catalog of the most common agent types that have been iden-
tified in literature [4, 8, 9, 44, 50]. Agents can be categorized by individual or
group behavior, capability, construction, etc. We have chosen to categorize
agents by the two most basic agent features: reasoning ability, and cooperation
ability. The list below is ordered from the most simple to the most complex.

Information Carrier Agents have no reasoning ability;
they exist to represent information or inanimate objects in
the agent simulation environment. Athanasiadis [4] dis-
cusses the distinction between information carrier agents
and decision maker agents, of which the remaining list is
composed. In Thinklab, information carrier agents nor-
mally represent messages or collected field data (see Sec-
tion 4.1.1 for more information).

1
2
3

Reactive Agents are the most simple type of agents ca-
pable of interacting with the world around them. They
incorporate a subsumption architecture, using layers of re-
active rules or rule sets. Rule filters are compared to in-
puts and/or agent state until a match is found; the actions
associated with the matching rule(s) are then carried out.
Layers can subsume, or override, each other based on pri-
orities dictated at build time.
Deliberative Agents generally follow the Belief-Desire-
Intention (BDI) architecture introduced by Bratman [8],
which means they maintain state and can reason methodi-
cally; in general they can be considered Turing machines.
BDI indicates these agents’ semantic model: they main-
tain state as a set of Beliefs, goals and priorities as a set
of Desires, and they attempt to achieve goals by execut-
ing Intentions. We focus more on agent capabilities than
internal workings, so we refer to these agents simply as
deliberative agents.

1
2

Hybrid (Layered Deliberative) Agents use a layered ar-
chitecture to provide both reactive and deliberative func-
tionality. A controller decides where to direct input and
which of the behavior(s) to perform.
Social (Deliberative + Messaging) Agents know about
and can communicate with each other. Their communica-
tion is often restricted by agent type or group boundaries.
They can inherit hybrid/layered functionally if desired.
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Organized (Deliberative + Messaging + Organiza-
tion) Agents can communicate with and reason about
each other, and can also form into social and organiza-
tional structures. These structures are well studied in lit-
erature, and lead to useful emergent behaviors, especially
in problem solving or socioeconomic simulations.

In addition to this rather linear taxonomy, Nwana [44] differentiates based
on mobility, describing agents as either static or mobile, as well as arbitrary
attribute-based categories – namely cooperation, learning, and autonomy. We
have incorporated these two classifications implicitly without making specific
references to them. With respect to static vs. mobile, all agents in Thinklab
are capable of existing at a specific location (or over a specific spatial region),
in the sense that all agents can specify whether they exist over space and/or
time. The specification of agent behavior in Thinklab is expected to be closely
tied to their semantics as specified by the ontologies adopted; the relevant de-
tails of the project in this respect are not fully finalized at the moment. For
the purposes of this work, any agents which have a spatial component are
capable of moving, whether they choose to or not. As for arbitrary attributes,
we defer to object-oriented software design to provide the modelers and de-
velopers with more fine-grained control beyond the categories above.
Russel [50] chooses not to categorize based on internal features and instead
defines agents by the external contracts they fulfill, in terms of perceptions and
actions, and presents optimization techniques by which they may do so. We
define agents in similar external terms, but have chosen to categorize them by
more traditional internal structures because these fit with pre-existing models
that have been incorporated into Thinklab.
Primarily, the information carrier and deliberative agent types are used in our
initial Thinklab prototype. This is not explicitly restricted, but the default
agents we have built fall into these two categories. Raw data sources (such
as topological maps) and messages are of the first type, and normal “agents”
are generally the second type. At the time of writing, no social or organized
agents had been created, but the mechanisms exist to create them if desired.

2.1.4 Ontology of Communication Structures in Literature

In Multi-Agent Systems, agent interaction patterns are arguably more impor-
tant than agents’ internal workings. Here we describe the most common pat-
terns from literature; the review by Horling and Lesser was extremely useful
here [24]. Other papers we reviewed were from Carley [10], Jennings [25],
Macal [32, 33], and Parrot [47], but these named no communication struc-
tures not present in Horling and Lesser’s work.

Hierarchies are simple, tree-like structures. Agents can communicate with
their parents and children; agents higher in the structure have more
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visibility and influence.
Holarchies are like hierarchies with portions of the tree grouped together as

holons. Holons share common characteristics, allowing functionality to
be segmented. Also, connections can be made between holons across
the structure for a more web-like arrangement. In their web-like form,
holarchies can be compared to small-world networks [59].

Coalitions allow agents to arrange themselves into temporary, goal-based
teams. Agents are expected to be selfish rather than altruistic or team-
driven (cooperative), and so agents use the coalitions to meet their own
needs. Each coalition is generally a flat structure internally, with the
possibility of one leader or representative which coordinates tasks in-
ternally and communication externally.

Teams are similar to coalitions but with cooperative agents, long-running
team membership, and long-running goals and priorities. Internally,
teams can be structured using roles which may change over time.

Congregations are grouping structures similar to coalitions and teams, with
a unique feature that congregations are not goal-driven. They are
formed by mutual, general self-interest (rather than specific or tempo-
rary goal-oriented interests) and similarity in the members’ capabili-
ties. Congregations are long-lasting but dynamic, and communication
between congregations is generally limited.

Societies introduce social contracts among grouped agents. The contracts
(known as social laws or norms) define external behaviors of agents;
agents may break the terms of a contract but will be sanctioned if they
do so. Societies allow system designers to state goals and policies ex-
plicitly while still allowing a measure of flexibility and decentralization
in agent interactions.

Federations are quasi-political structures in which agents delegate represen-
tation to a single leader of each federation. Leaders are expected to ne-
gotiate on their constituents’ behalf to achieve cooperation with other
federations, and the constituents are given a single, consistent contract
by which to operate. Federations also allow these localized contracts
to differ, so they are effective for integrating heterogeneous actors.

Matrix Organizations introduce the idea of categories of influence. Each di-
rection of an agent matrix corresponds to a group within the population;
rows may be peers in a social group while columns represent profes-
sional team (with a manager in the top row leading the team). In these
structures, agents prioritize influences and commitments from various
directions to guide their decisions.

Compound Organizations is a term which acknowledges that agent inter-
actions do not fit cleanly into categories, but are usually some combi-
nation of the above ideas along with system-specific needs. Different
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structures may be blended, superimposed, or structured hierarchically.
Horling and Lesser mention that some combinations work especially
well together, for instance teams with hierarchical internal structures.

In Thinklab, no explicit communication structures have been created. We
anticipate that developers will need a fine-grained set of such specifications,
and again the core semantics will be the guide to selecting specific types
of agents, communication capabilities and behaviors based on inheritance
of agent identity from core semantic types. In our current use case scenar-
ios communication structures are of obvious importance (for instance, both
scenarios involve government/family interactions, suggesting at least a hi-
erarchy). As Horling mentions, some structures emerge out of patterns of
behavior, rather than being dictated from the top down. Our government/-
family actors observe each other directly as a basis for their interactions, and
so could be described as having a simple emergent communication structure.

Messaging Systems

Agent coordination systems normally employ specialized agent roles to facili-
tate agent interaction, for instance yellow pages (directory agents) [24]. Some
systems allow messaging based on a blackboard system, in which all agents
can see all messages and can respond as desired [21, 23].
The type of messaging system used in an agent platform is for the most part
orthogonal to the interaction system(s) employed, but some agent organiza-
tion structures will imply certain messaging characteristics. For instance, any
kind of team- or coalition-based structure would suggest that the messaging
system can be partitioned by team, group, or specialty; structures with privi-
leged roles would likely require visibility constraints in the messaging system;
etc.
A closing mention should be given to FIPA standards which apply to messag-
ing, and imply certain agent coordination structures, such as contract nets [6].
FIPA and FIPA-based systems do not directly enforce agent structures, but
their usage does fit roughly within the categorizations given here.

2.2 Functional Reactive Programming
Functional Reactive Programming (FRP) is a programming paradigm which
grew out of the need for efficient and intuitive representations of objects
and actions in computer animation. It is an improvement over discrete-
representation techniques which tightly couple computation and (real-world)
display of images and animations. FRP begins with the basic assumption that
time and other dimensions are continuous, and should be explicitly treated
as such [13, 15].
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Historically, computer animation had been done using frames of raster im-
ages to represent objects in a way that resembles the operation of computer
monitors, which use pixels to display images that are refreshed at some dis-
crete time interval. When animating raster representations of objects in space,
all values of all locations on the monitor are re-computed, even if few of their
values change at any given time step. This model of computer animation is
computationally very expensive.
Pixel image formats and frame-based animation mimic the computer monitor
in a software form. At the lowest level, image display software must operate
using discrete forms if it is to interact with a computer monitor, but there
is no limitation to how an object must be represented in software. The only
requirement is that the representation can be converted into an appropriate
format for display, and it must unambiguously describe the object.
In reality, objects move fluidly through time with no correlation to the ar-
bitrary time steps imposed by screen refresh rates, processor or memory fre-
quencies, discrete command steps, etc., and they are also composed of con-
tinuous shapes rather than pixels. The goal of FRP was to decouple the task
of representing fluid objects from any specific representational scale by in-
troducing layers of abstraction. It exposes these qualities of the real world
explicitly, rather than hiding them behind artificial representations of pixels
and time steps. Discretization can be introduced as needed during rendering,
so that an object’s observed values are synchronized with screen refresh rates
and pixel density.
The main primitives used in FRP are behaviors and events, introduced in work
by Elliott et al. which preceded FRP [14, 12]. Time in FRP is treated as a
total order (any two instants in time must be comparable) but there is no
requirement that it be represented using discrete time steps of equal size or
even absolute scalar values [13].
Behaviors and events were originally imagined in an idealized way that
resisted efficient implementation, especially using an imperative language.
However, Elliott’s later paper sheds light on implementation by introducing
the push/pull design, an elegant solution for dividing behaviors into their dis-
crete and continuous components and treating each one separately (see Section
2.2.1)[15].
FRP specifically acknowledges that some phenomenamay be arbitrarily short,
and therefore may avoid detection in discrete environments with coarse sam-
pling rates. It uses the term events to describe these phenomena which are es-
sentially discrete momentary occurrences. One implementation of FRP used
Interval Analysis [52] to reduce the computational effort in event detection,
which is essentially a technique for detecting periods of time where events
will provably not happen. These time periods are not analyzed for events, and
instead computational effort is focused on periods of time where the events
might happen.
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2.2.1 Push-Pull FRP

Push-Pull FRP [15] is an implementation of FRP which takes more opti-
mization details into consideration. It treats data differently according to
whether it changes discretely or continuously: discretely-changing, instanta-
neous events are pushed to any component of the system which is affected
(much like an Observer design pattern [18]), and between these discrete
events, continuously-changing values are pulled by the observer on demand.
In Push-Pull FRP, time-varying values are segmented into non-reactive, con-
tinuous time functions which occupy the time periods between discrete, mo-
mentary reactive values. Real-world activity is modeled using reactive behav-
iors which are composed of these two components.
Push-Pull FRP treats discrete changes in a manner similar to event-driven
programming, and so is a good basis upon which to design a semantic model
which can be implemented in an object-oriented, imperative language (Think-
lab is written mainly in Java). Code written in an event-driven system has
the purpose of responding to events in a system, rather than dictating an order
of execution, as is the case in script-based or procedural programs. Event-
driven programming and FRP’s discrete event semantics are also similar to
the Observer design pattern [18].
Push-Pull FRP treats discrete changes as events which cannot be known in ad-
vance and are handled as they occur. This concept also informs our treatment
of discrete events in a simulation (see Section 4.4.5).

2.3 Geospatial Interpolation
The problem of translating between arbitrary scales takes many different
forms in various research areas. One area of research is geospatial interploa-
tion, which must be used for some scale translations in our use case scenar-
ios. Mitas and Mitasova [38, 37] give a very concise overview of interpola-
tion strategies in a geostatistical setting. The strategies they describe allow
observed phenomena in d-dimensional space which is collected in irregular
sample patterns to be interpolated into a target representation with arbitrary
resolution.
In their words, the interpolation problem can be described as: given the N

values of a studied phenomenon zj, j = 1, . . . ,N measured at discrete points

rj = (x
[1]
j , x

[2]
j , . . . , x

[d]
j ), j = 1, . . . ,N

within a certain region of d-dimensional space, find a d-dimensional variate
function F(r) which passes through the given points; that is, that fulfills the
condition:

F(rj) = zj, j = 1, . . . ,N
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Mitas and Mitasova mention that multiple-scale modeling will require inter-
polation techniques which can incorporate arbitrary scales, and they propose
further work into more general solutions as well as drawing inspiration from
the image-processing field. They suggest that wavelet techniques are a group
of approaches with good potential in multivariate environments, a conclusion
we have also come to. Their suggestion would imply that image interpolation
and vector representation are good resources from which to draw, which we
have done.
Various interpolation categories covered in their work are described in the
following subsections:

2.3.1 Local Neighborhood Approaches

The intuition behind these approaches is straightforward and practical: Any
given data point will probably have a stronger relationship with the data
points in its vicinity than with points further away. This makes a lot of sense
in geostatistics (e.g. rainfall or other weather patterns, elevation, pollution,
etc.) and has broad support in the physical sciences in general.
But there are also computational and semantic benefits. These approaches
allow segmentation of the interpolation process; they allow the problem to
be broken into separate computational tasks, enabling parallel computation.
Segmentation does not guarantee that the result of an interpolation can be
represented in a modular and concise fashion. For instance, although IDW
can be implemented as a localized process able to define a totally smooth sur-
face from input points, it does not generate a result which can be represented
concisely.

Inverse Distance Weighted Interpolation (IDW)

IDW generates interpolated points by computing a weighted average of input
data points. The weights in the weighted average are proportional to the
distance and scaled by some exponent p (usually p = 2).
To reduce computational expense incurred for points which are far away
from the point being generated (and therefore not weighted very strongly),
a localized neighborhood can be defined from which to sample: either
the closest n points, or the points that fall within a radius r or a grid
([x− a . . . x+ a], [y− a . . .y+ a]).
The most simplistic version of IDW would be to consider only the closest
input point for each computation (n = 1), resulting in a d-dimensional step
function for F(r). Evaluating F(r) at any point r = (x

[1]
i , . . . , x

[d]
i )would return

the closest zj = F(x
[1]
j , . . . , x

[d]
j ).

For two-dimensional space, a generated data point f(x,y) would be based on
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some number of input values v(xi,yi) in the neighborhood of (x,y):

f(x,y) ≈
∑

iwiv(xi,yi)∑
iwi

where wi ∝ (distancei)
p

≈
∑

i

(√
(x− xi)2 + (y− yi)2

)p
v(xi,yi)∑

i

(√
(x− xi)2 + (y− yi)2

)p
This formulation unfortunately cannot be represented as a vector or a set
of continuous curves; instead, specific points must be generated from this
estimation based on the input data. This has implications which make it less
desirable for our purposes (see Section 4.2.2).
Also, IDW without modifications will lead to flat spots at each generated
point, which has the effect of disturbing derivative (slope) information. Mod-
ifications have been proposed by many authors for working around this prob-
lem and preserving an approximation of slope. Another shortcoming is that
curves generated by IDW will not generally pass through the sampled points,
but rather approximate them. A curve is based on a weighted average of
some number of local points, and therefore will never pass through a local
maximum or minimum point. This can be a minor or very serious down side,
depending on the application.

Natural Neighbor

This technique begins with a Voronoi tessellation of the input data points. An
interpolated point is generated as a weighted average of values from nearby
regions. The weights are generated by computing a hypothetical tessellated
region around the point as it would exist if it were included in the data set.
Weights are equivalent to the proportion of the newly generated region which
would lie in each of the previous regions. These weights are used to compute
a weighted average of the corresponding values from each of the previous
regions which overlap with this new hypothetical region:

F(rj) =

n∑
i=1

wiF(ri)

This is an arbitrary-dimensional approach and generates smooth (rubber-
sheet like) surfaces. Additional blended gradient information computed from
the data points can be incorporated to smooth further while preserving first
and second order derivatives. These characteristics make it a good general-
purpose interpolation mechanism for geostatistics and other fields.
The most straightforward version of this technique is two-dimensional linear
interpolation between neighboring points spaced evenly in the x direction.
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Triangulated Irregular Network (TIN)

This approach generates triangle-shaped surfaces from individual data points
by connecting all trios of neighboring points. The points can be chosen by
various means; Delaunay triangulation selects points such that the circum-
circle around any triangle does not contain any other point. The surfaces
represented by the triangles are used as bivariate (or multivariate, in arbi-
trary dimensions) functions which can be solved for an interpolated value
F(ri). TIN can also employ non-linear techniques to blend the edges of the
surfaces together by incorporating the derivatives (first or first and second) of
the surfaces in the result. This will also retain differentiability of the result.
TIN techniques perform well computationally because they are localized and
therefore parallelizable, however they do not give the highest quality results.
Because the triangles are exact, continuous representations of the interpola-
tion, this approach is one which satisfies our preference for continuous inter-
mediate representation (Section 4.2.2).

Rectangle-Based Methods

What Mitas and Mitasova describe as Rectangle-Based Methods are included
in this thesis as spline techniques. These techniques are well-represented in
image processing and interpolation fields. Splines represent d-dimensional
shapes as vectors with curvature that comes from generating functions. These
are discussed in Section 2.4, with attention given to wavelet techniques com-
monly used to scale raster images up or down. Using wavelets is concep-
tually similar to Fourier-based approaches, in that wave-shaped generating
functions form a basis for discretizing a continuous signal by storing function
parameters. Later, re-constructing that signal from the stored parameters is
a matter of plugging the parameters into the generating functions, possibly
integrating many sub-signals together.
Spline methods can optionally apply tension to the vectors that are given, as
a mechanism for smoothing the result. One specific algorithm from Mitas’
and Mitasova’s prior work [40, 39] uses a smoothing and tension approach
which preserves all orders of derivatives, so that mathematical analysis on
the resulting data set can be performed. This can be useful in geostatistical
sciences where such derivatives are important, for instance using runoff and
erosion models in which slope influences water flow characteristics.
Other benefits to smoothing are to make a rendered image more visually
pleasing, or even to improve accuracy in cases where interpolation using
general algorithms alone results in jagged or bumpy intersections, or reducing
aliasing patterns.
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2.3.2 Geostatistical Approaches

These approaches generally inherit from Kriging Methods, a family of interpo-
lation methods developed for geostatistics in which certainty can be estab-
lished for all generated data points along with the generated points them-
selves. This type of algorithm will generate a curve, and so can be rendered
or incorporated into models directly, but Kriging methods are unique because
they also generate confidence intervals which express the range of possible
values based on statistical certainty.
However, Kriging methods are computationally expensive, requiring special-
ized resources for large data sets [28]. Using them should therefore be re-
stricted to cases where their unique benefits are needed.

2.3.3 Variational Approach

This technique minimizes the sum of the deviations and maximizes the
smoothness of the result. In some applications of this technique, mathemati-
cal problems may be introduced which prevent accurate analysis of a result-
ing surface. This is similar to the Spline methods with tension mentioned in
this section, but uses a different representational primitive.

2.3.4 Application-Specific Approaches

These domain-specific approaches can take many forms.
Stream Enforcement is an example of how domain-specific metadata can be
used to tune or refine the results of a more general algorithm. As is the case
with other examples from Mitas’ and Mitasova’s work, stream enforcement
is a technique used in geostatistics. It superimposes the shapes of known
streams and rivers over a topological map being generated from surveyed
sample points. The algorithm converting sample points into a smooth sur-
face (especially using triangulation techniques mentioned here) may make
assumptions that dam-shaped land masses exist in valleys when they actu-
ally do not. The assumption is reasonable; two sample points which are very
close together will often be in fact joined by a mass of land. But in valleys
with steep slopes on either side, this assumption does not hold. Stream maps
which are superimposed over the sample sets are domain-specific metadata
which inform the algorithm that these land masses should not be created
between two points divided by a stream.
Metadata techniques like this are effective ways of introducing domain-
specific knowledge into a general algorithm. They are ways for algorithms to
incorporate additional information, in this case that a stream runs through a
valley being rendered, to help select between interpretations of the original
data.
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2.4 Image and Signal Interpolation
Image interpolation uses general multidimensional interpolation approaches
to convert from one pixel representation either into a continuous represen-
tation or another pixel representation. Often times, the algorithm used will
generate a vector-based (continuous) intermediate result. This topic can be
seen as a simplification of Geospatial Interpolation, because image and sig-
nal interpolation are done in well-controlled environments. Input values lie
strictly within known boundaries and represent phenomena with very con-
sistent physical properties. Representational formats are primarily matrix-
based, using regular sized units, and generally only one interpolation strategy
is used in each setting.
De Boor’s review of splines [11] covers interpolation techniques as well
as splines and spline types in general. This book is a de facto reference
for vector-based representation of data points, and is not strictly an image-
representation study. It focuses on splines, which are extensively used in
image interpolation, so we include it here.
Kopf [29] presents a new technique for generating high quality vector images
from low-resolution bitmaps. His work is also an example of domain-specific
vectorization, a general category of adaptation procedures by which a gen-
eral interpolation approach can be tuned by inferring beliefs about what the
low-resolution image represents. More on domain-specific tuning is given in
2.3.4.
Image interpolation is a good resource for our work because the underlying
algorithms tend to be general. They deal with color values distributed over
multi-dimensional space (whether two- or three-dimensional), which is not
very different than arbitrary state values as a function of multi-dimensional
space and time. Many of the underlying processes used in image interpolation
will work in arbitrary dimensions (even beyond four-dimensional space-time),
so this field is rich with resources for our work.
Image interpolation generally uses the appearance of an image as the stan-
dard for quality. In some cases, a certain amount of accuracy or a specific
trait is required. For instance, in elevation interpolation where differentiabil-
ity is needed, these techniques may not apply. Image interpolation is a good
starting point, providing procedures in general cases, and it is also a good
platform for developing the components of an interopolation solution.

2.4.1 Lanczos Resampling

Lanczos resampling applies a sinc function to coded signals above the Nyquist
frequency, from the Nyquist–Shannon sampling theorem [26]. This is the fre-
quency which is double (half the wavelength of) the highest-frequency input
one wishes to encode. Using Lanczos resampling results in a very accurate
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Figure 2.2: An agent performing ten consecutive randomized queries

t=0 t=1

...

Figure 2.3: An agent may perform fewer queries per step over the course of many
steps

representation of the original data, but requires high-resolution inputs.
The sinc function is a type of wavelet, and so it provides two essential features
for large-scale, general-purpose interpolation: segmentation and continuous
representation. These are discussed in Section 3.2.1.

2.4.2 Oversampling (Monte Carlo)

One approach used in image interpolation is oversampling, a Monte Carlo
technique for computing a weighted average value for a cell whose bound-
aries do not correspond cleanly to boundaries in the input data. Relating this
type of process to geostatistical and other data interpolation tasks is straight-
forward. Given an input which has an unrelated space/time grid, an agent
may take random samples within the range in which it is interested and av-
erage the values to determine an appropriate aggregate value.
The oversampling technique addresses the problem of overlapping cells in
the following way. Every time an agent queries a data source with a different
scale (i.e. overlapping cells), it does so by selecting a random point within
its range. That random point is then projected onto the data source and the
cell within which it lies is the cell that is queried.
An example of a single value being generated by ten samples is shown in
Figure 2.2. This will produce a weighted average of the underlying data
which overlaps the agent’s area. (Note that not all overlapping cells will
necessarily be chosen during any given number of random selections.)
In more complex cases, where an agent overlaps with many cells of under-
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lying data and must generate aggregate information, a less intensive version
can be used by averaging some number of random samples per time period
(see Figure 2.3). In each time step the agent may choose fewer than one
sample from each underlying cell, but over time all cells will be represented
proportionally to their overlap with the agent.

2.5 Signal Theory
Signal theory deals with discrete representation of continuous signals, and
is in general a study of two dimensions: one-dimensional discrete values
being transmitted across one-dimensional time through some communica-
tion channel with known properties. It studies the accuracy and effective-
ness of reducing continuous, real-world phenomena to discrete representa-
tion. Higher-dimensional data can be represented by reducing it to a series
of one-dimensional discrete value samples.
Signal theory can be employed in our work to reason about the accuracy and
effectiveness of our observation and scale mediation techniques, and about
the theoretical limits of the discrete representation of observable phenom-
ena, and the reliability of re-constituting or re-generating information from
a discrete representation.
The limitation of signal theory as it applies to us is that it is generally a
study of one-dimensional phenomena. Signal theory is at its core is data
representation and transmission. The data can represent arbitrary dimensions if
the representational format allows it; signal theory does not place a restriction
on the dimensionality of the data, per se but it does inherently enforce data to
be represented as a discrete-valued time series as an intermediate step. Still, it
could be said that we have the same limitation: computers represent all data
in physical, binary, memory- or disk-based formats, which are inherently one-
dimensional, and so our techniques are at some level strings of discrete values
as well.

2.6 Collision Detection
There is a rich body of work on collision detection, with contributions from
both industry and academia, especially in the field of video game animation.
The field of collision detection is broad; even the problem is stated differ-
ently in different contexts. For each form of the problem, many strategic
approaches exist. The broadest subcategories within collision detection are
dynamic (generally a priori) analysis by solving closed-form time functions
for object motion, and static (generally a posteriori) analysis of objects at pre-
rendered locations [16].
Many approaches involve partitioning space by bounding boxes, cones, etc.,
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and identifying non-overlapping regions of objects for which collision com-
putations can be skipped [16, 27, 30]. This is the spatial equivalent to (tem-
poral) Interval Analysis (IA), an optimization for event detection which has
been leveraged by FRP (Section 2.2). IA is used as an a priori technique, and
so is equivalent to dynamic collision detection approaches. Although we do
not use IA directly, it has informed our strategy for event semantics. Sim-
ilarly, we would like to use dynamic approaches to find the most efficient
techniques for detecting collisions in Thinklab.
In contrast, static techniques deal with spatial positions already generated
during some time step in a simulation or animation. These are the more
common algorithms in the field, and unfortunately do not apply very well
to our formulation of the problem. We do not anticipate their use being
very effective in Thinklab, but by our judgment there should be no barrier to
implementing these types of algorithms using our system.
We provide a good interface for incorporating collision detection algorithms,
but leave their implementation for future work (see Sections 4.4.4 and 6.1.1).
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Chapter 3

Problem Statement

Thinklab is an ontology-based semantic meta-modeling and simulation plat-
form. A simulation in Thinklab is a series of observations by agents, which at
a system level can be seen as raw data exchanges. The subject of an observa-
tion is also an agent; we call the states that are observed agent-states, which
are composed of property-value pairs over specific time periods. Agents expe-
rience observations subjectively by perceiving the properties of other agents,
and may respond to the observations by making decisions and taking actions.
The decisions made and actions taken by an agent may result in agent-state
transitions (changes in the states of observable properties of the agent), or
they may result in collisions with other agents (a general term we use to refer
to agent-state transitions forced upon agents which are not a result of their
own internal decisions). Because agents and their decisions are observable by
other agents, the process of a Thinklab simulation can be expressed through
a graph. Although we describe states and state transitions, agents are more
complex than state machines, so we will use state machine terminology and
concepts without pretense of rigor.
Observation is the main process we deal with in this thesis. An agent observes
another agent at a specific instant and makes decisions that affect its states
over a specific temporal duration; we also allow for continuous observation,
probabilistic reasoning, and continuous, time-varying states in a restricted
interpretation. These special cases fit within a semantic framework of instan-
taneous decisions with specific temporal effect (see Section 3.1).
Before this work, non-synchronous scales had seen limited treatment in agent
systems, and were not incorporated into the reference implementation of this
work (Thinklab). What are now referred to as agents had been only capable
of observing and being observed in a fixed time instant. Some probabilistic
representation had been introduced in the form of Bayesian network data ac-
cessors, but actual behaviors could not be carried out in a temporally dynamic
simulated world. The work presented here allows time to move forward, and
for agents to interact while maintaining subjective views of space and time.
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Semantics: Representational and behavioral patterns
which determine system characteristics

Perception: Agent-specific 
distortion and interpretation
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Figure 3.1: The three main problem categories within multi-scale simulation

Related work reviewed by the authors did not contribute meaningfully to
the design of a truly multi-scale simulation environment. Scales in other sys-
tems are expected to be ultimately synchronous in all dimensions. According
to Balbi [5], most systems are either spatially non-specific (deferring spatial
reasoning and interaction to the implementation), or assume a single syn-
chronous grid of space. All reviewed systems had a single, fully synchronous
time schedule with time steps of equal duration.
The problem of multi-scale integration breaks down into three main cate-
gories (see Figure 3.1): the Semantics of reasoning about scale, both in terms
of the software API and the agents’ reasoning abilities at runtime; the Scale
Mediation required when the agents in a system have different internal repre-
sentations; and the Subjective Perception that an agent may have, either by its
relative position in space-time or by how the agent processes perceived states.
Semantics is covered in Section 3.1, scale mediation in Section 3.2, and Sec-
tion 3.3 covers agent perception. Throughout the thesis, use-case scenarios
will be used as examples; these are introduced in Section 3.4. Finally, Section
3.5 discusses deliberate simplifications we have made to ensure usability in
terms of complexity and performance.

3.1 Semantics
The problem of scale must be handled in a semantically consistent way if it
is to be incorporated into a useful modeling system. The semantics chosen
must be flexible and meaningful, but also intelligible and decidable.
The purpose of this work is to provide modelers with tools to build agents
whose perception, and as a consequence their reasoning and behavior, is in-
fluenced by the different scales adopted by different interacting agents. Mech-
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anisms should be provided to implement behaviors as fluidly as possible, but
differences in scale and scale translations should be explicit and controllable.
This requires that appropriately expressive semantics be created for repre-
senting scales and the operations that can be done on them, and also for the
reasoning and behaviors that result from observations made across differing
scales.
We do not want differences in scale to be hidden from agents or the users
who create simulation models, nor do we want to require users or agents to
reason about scale unless it is important to their functioning. Scale should be
an explicit, first-class concept which can be reasoned upon but also automated
by straightforward logic within the core Thinklab system. This logic must be
intuitive to understand for users, because designing agents with the ability to
reason about scale implies that these agents are performing reasoning tasks
equivalent to the automated reasoning performed by Thinklab. Also, it should
be possible for agents to fully replace, or to perform only a subset of, what
is normally automated by the system, which implies that these automated
functions are both modular and intelligible.
Within the field of agent modeling and simulation, there is a wide variety
of agent representation semantics. FLAME [23] uses XML files to define
agents as enhanced state machines; procedural reasoning is not present in
FLAME agents, and so the execution model is not rich enough for our pur-
poses. SWARM [22, 36, 53] and Repast [42, 43] allow modelers to create
code objects in Java and other languages, so procedural reasoning is possible,
but in both of these systems, the world of interaction is a single, synchronous
entity in the simulation, meaning that the issue of heterogeneous scales is not
addressed within these systems (or, more precisely, it is the problem of the
modeler to deal with it before introducing external data).
Some projects using these systems have concepts of heterogeneous scale as
a lightweight layer of translation on top of a synchronous lattice representa-
tion of space/time. Balbi [5] reviews many systems built for socio-ecosystem
research, specifically identifying how space and time were treated in each
system. About half were aspatial; the spatially explicit systems used com-
binations of cellular and GIS-based representation. Temporal scales were
all synchronous, with simulation time “steps” representing some number of
years. One slight exception to this was Berman’s study [7], in which year-
long time steps were broken down into fourths or fifths for certain event
types. This small departure from synchronous time and space does not fulfill
our goal of truly heterogeneous scale representation, so we had no previous
analysis of the problem to follow.

3.1.1 Cyclical Dependency vs. Circular Reference

In this thesis, we draw a distinction between cyclical dependency and circu-
lar reference. Cyclical dependency is a natural process by which two agents
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influence each other over time; a circular reference is an un-resolvable depen-
dency in a single instant of time in which two or more elements depend on
each other in a way that none can be computed. A circular reference can be an
artifact of a limited view of time and a product of flawed model design: most
circular references in models disappear if the notion of time implemented is
made flexible enough to solve the problem of simultaneous write access to
co-dependent states. As an example, consider the implications of the speed
of light and event horizons: beings cannot influence each other immediately,
and the synchronization of information transfer in cause/effect relationships
can only be slower than the speed of light; therefore, simultaneous effective
co-dependency is impossible.
A system which models real-world interactions must allow the unlimited defi-
nition of cyclical dependencies, because such interactions are common in real
life. For usability, accuracy, and the convenience of finding errors quickly,
the system should also be able to detect and handle circular references show-
ing up as artifacts. The system should fulfill these requirements explicitly,
problem scenarios should be unambiguously classifiable as either cyclical or
circular, and the cyclical problems should all be computable in a straightfor-
ward way.

3.2 Mediation Between Scales

Agents in a modeling system may have internal representations that are re-
quired for their correct functioning. In some cases, agents’ internal represen-
tations will be matrices of discrete values, and in other cases they will use
continuous values (e.g. vectors) to represent their state. Agents may also
represent values as qualitative classifications or semi-quantitative ranks. In
other cases, an agent may simply apply a modification to underlying data,
and can inherit and re-present arbitrary representation schemes.
Simulations using heterogeneous scales will be forced to translate observable
phenomena from one scale to another using scale mediation mechanisms. As
mentioned in 2.3, the scale mediation problem can be stated as: given the N

values of a studied phenomenon zj, j = 1, . . . ,N measured at discrete points

rj = (x
[1]
j , x

[2]
j , . . . , x

[d]
j ), j = 1, . . . ,N

within a certain region of d-dimensional space, find a d-dimensional variate
function F(r) which passes through the given points; that is, that fulfills the
condition:

F(rj) = zj, j = 1, . . . ,N

In this section we describe the various elements of the scale mediation prob-
lem.
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3.2.1 Quality and Performance

The effectiveness of a scale mediation solution depends primarily on two
features: segmentation and continuous representation.
Segmentation is the ability to split a data transformation problem into seg-
ments, and is essential to processing large data sets, as it allows parallelization
of the computation. Data represented using values with only localized con-
text can be segmented. For instance, the coefficients of a cubic spline model
representing some z value within a (x,y) surface only affect a small number
of neighboring values. Contrast this with polynomial vectorization, which
takes all data points into account and generates a high-dimensional formula
whose coefficients fit the resulting curve to all points along each dimension.
A change in any one of the coefficients of a polynomial vector will affect the
value of all points, whereas a change in one coefficient in a cubic spline model
will affect only a few points immediately around the center of the change.
Continuous representation uses continuous, real-valued curves to represent
the data set, rather than measurements located at discrete locations and hav-
ing possibly limited-accuracy values, as in a bitmap image with finite color
depth. Continuous representation allows data to be represented concisely and
accurately, and also allows data expressed in one scale to be re-sampled into
multiple arbitrary scales without repeating the full scale mediation process.
This can be accomplished by saving the continuous-valued representation of
the data after a conversion is done, and re-using this representation as the
basis for generating discrete data in another scale.

3.2.2 Interpolating Between Sampled Points

Geostatistical data sets are commonly assembled from some number of dis-
crete measurements. Various data collection techniques may be used, de-
pending on the phenomena, location, instruments used, etc. Each of these
instruments or collection techniques introduces a degree of granularity into
the data set; the resolution generated by a soil survey may be a grid of cat-
egorical soil quality values with a two-meter distance between each sample
point, whereas non-remotely sensed sample data such as biodiversity profiles
might be taken only where humanly possible, which may be very limited,
such as on exposed cliff edges or swampy jungle terrain.
Innumerable other possibilities may preclude samples being taken at regular
intervals, such as time or financial constraints, political or legal hurdles, bad
weather or visibility, etc. In this way, geostatistics shares our need to accom-
modate source data which is either incomplete or in multiple incompatible
scales, including scales which differ in their fundamental treatment of the
measured phenomenon.
All the limitations of real-world sampling (irregularity, inaccuracy, discrete
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or blunt values) have equivalents in a computing environment. Values in a
computer are necessarily finite, although they can be expressed with very fine
resolution; inaccuracies are always present in parameterized computations
when parameters are measured or assumed; and irregularities occur when
accommodating heterogeneous scales in the form of aliasing. Aliasing refers
to the patterns which are created when two differing sampling schemes are
overlaid on each other. It can commonly be seen in small fonts which become
pixelated or in digital images of subjects with regular patterns in them (such
as a photo of a mesh screen taken with a digital camera). These patterns can
manifest as jagged edges, spots, or warping.
Therefore we would like to draw inspiration from multivariate interpolation
techniques in other areas and apply them to the simulation environment. This
will allow us to leverage thinking which has already been invested by experts,
and it will also provide domain-specific solutions which more closely fit the
needs of the data in question.

3.3 Subjective Agent Perception
Agents have subjective views of space and time. Real-world agents’ expe-
riences can include distortions due to physics, error-prone sensors, limited
experiential capacities, distance, interference, or other factors. Agents in the
target implementation aim to reflect real-world semantics, so accuracy in
the representation of perceptual scale distortion is a goal. Agents may sense
distance or take other measurements accurately at close proximity, but less
accurately at longer range; they may wake up and become dormant at certain
intervals, which causes their awareness of time to vary; or they may be sub-
ject to physical effects, such as heat or magnetism, which affect the physical
properties of their inputs.
These are all examples of ways that the same world can be perceived dif-
ferently by agents with different sensors, internal structures, or positions
in space. These effects of subjective perception can be broken down into
three categories: perspective, accuracy, and distortion. These do not need to
be treated explicitly as separate concepts by a simulation system, provided
they can all be included in simulated agents.

3.3.1 Perspective

Perspective is a subjective distortion due to the laws of physics. This could in-
clude parallax distortion, vanishing points on the horizon, objects hidden be-
hind other objects, or other natural distortions that happen because of physics.
The reason why we differentiate this from other subjective effects is that it
happens outside of the agent, in other words, it is just a characteristic of the
way that phenomena arrive at an agent (the way light approaches the lens of
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an eye or a camera), and it is not because the agent is incapable of interpret-
ing the inputs accurately.
We would like to include these filters internally in the agents, even though the
physical effects happen outside the agent, because we would like to reserve
the possibility of creating agents for which these distortions are not present.
An agent might be composed of a distributed sensor network which is not
subject to interpreting input at one physical location, for instance a satellite
system with a processing center in one city. This type of agent has a physical
center of computation and is therefore considered to be located there, but its
inputs are distributed over its environment.

3.3.2 Accuracy

Agents’ inputs can vary in accuracy based on the qualities (or quantity) of
their sensors. A real-world example is the various ranges of light which are
visible by different animal species. Humans see what we call the visible spec-
trum, but other animals may see frequencies below or above our range. Com-
binations of frequencies can be identified with more or less accuracy based
on the number and type of cones present in the animal’s retina. Similarly, the
senses of smell can differ between species, and the sense of touch can vary
widely even between locations on the same animal body.

3.3.3 Distortion

Distortion effects are those in which an agent experiences one class of phe-
nomena and makes assumptions or develops meaning in another related class,
for instance judging spatial scale based on the amount of time that has passed
or the visual or emotional cues that have been triggered.
The same external phenomena can be experienced by an agent differently
at different times based on the agent’s state. An animal that is sleeping, for
instance, may experience the time asleep as passing very quickly; many hours
of sleep might be perceived to be the same as only a few seconds of waking
life.

3.4 Use Case Scenarios
To make discussions more concrete, and to make the concepts more acces-
sible, we have created use case scenarios which illustrate the functioning of
the Thinklab system and the requirements we would like it to fulfill.
The scenarios involve multiple agents interacting with each other in real time.
All agents have inputs which correspond to observations of other agents’ be-
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Figure 3.2: Agent interactions in the Soil Erosion scenario

haviors, and therefore they have a strict dependency on the forward move-
ment of time.
Cyclical dependencies are immediately noticeable in both of the diagrams.
These types of influences must be accounted for in a general modeling system
because they exist in the real world. However, true circular references do
not exist. As introduced above, circular references in modeling/simulation
system are usually the products of flawed design; our treatment of this issue
is covered in detail in Section 4.4.3.
Events that may take place in these scenarios are changes in government pol-
icy, socio-economic activity (working, farming, moving to another village),
agents coming into existence or being destroyed (family units either coming
of age or dying), or natural phenomena (rainfall and flood patterns). Events
may take place as a result of procedural decision making, as would be the case
with an autonomous deliberative agent, or as a result of thresholds or other
requirements being met, such as a family being forced to move when there
is no food available. Observations may be directly made of other agents, or
they may be aggregated observations over collections of other agents. These
events and observations should be straightforward to model and should be
clear to users who observe the simulations being executed.

3.4.1 Scenario 1: Soil Erosion

Some of the primary drivers of soil erosion risk in a particular area of land are
rainfall, slope of the ground, vegetation root strength, and human activities
such as farming, foot or car traffic, and clear-cutting the land (see Figure 3.2).
We can develop estimations of potential soil erosion areas and model people’s
behavior in response to soil erosion, as well as people’s contribution to soil
erosion.
Also, governments may intervene by providing subsidies or penalties to mod-
ify people’s behavior. In this example, we assume there is a government
program which, when the soil in an area is at risk of erosion, pays farmers
50% of the potential crop value if they decide not to farm.
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Figure 3.3: Agent interactions in the Food Security scenario
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Figure 3.4: Willingness to Farm andWillingness to Move can be seen as independent
Bayesian networks

3.4.2 Scenario 2: Food Security

This scenario is more complex (see Figure 3.3). Administration of economic
and food policy is handled at both the regional and village level for a certain
community. Family units may make decisions such as whether to farm, work
in other employment, collect food aid, or to move to another village depend-
ing on various criteria, and one result of decisions in the context of available
resources is a given family’s level of food security. The criteria which affect
families’ behaviors may be availability of water, arable land, food for pur-
chasing, economic policy, risk of flood, and risk of events such as social or
political upheaval. Also, families’ behaviors influence the availability of food
and employment in a given village.
These three agent types – family units, leaders, and environmental systems
– all respond to each other in patterns currently being explored by field re-
searchers related to the Thinklab project. The researchers develop Bayesian
networks for decision making based on their findings, and the natural phe-
nomena (rainfall, flood danger) is modeled in the system through field studies
and from published geophysical data.
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“Willingness to Farm” and “Willingness to Move” are concepts that may be
resolved in Thinklab to models that use Bayesian networks. Each represents
an abstract decision factor on which a family unit will rely to make decisions
about whether to change their location or farming activity (Figure 3.4). We
would like to allow Bayesian networks to be used as the strategy to compute
concepts representing inputs for agents.
In this scenario, decisions are made by families and by the village chief de-
pending on collective economic activity, and the collective actions of village
chiefs influences regional government decisions. This implies that aggregate
functions must be present in the simulation system.

3.5 Deliberate Simplifications

As we developed Thinklab, we could only spend a finite amount of time in
design and development. Also, it is bad practice to over-develop a system
in the attempt to obtain indiscriminate flexibility for every use case. The
simplifications in this section constitute the boundaries of our work, but it
should be possible to expand into any one of them as the need arises. We
leave these expansions as Future Work (see Section 6.1).

3.5.1 Handling of Relativistic Space/Time

An observer’s experience of the physical universe will depend on the ob-
server’s position in space and time. According to Einstein’s theories, time,
space, and gravity are co-dependent, and are experienced subjectively by ob-
servers. Special relativity states that observed events cannot be ordered in
any absolute way; events which appear ordered a certain way from one point
of view may be ordered differently when seen from another point of view.
A truly general modeling framework would allow for observations which in-
clude time delay and spatial warping based on an agent’s position and veloc-
ity. It would also include the limitations of the speed of light itself (e.g. event
horizons). Our system has not been used for a simulation task requiring these,
so instead of trying to adopt a space/time view compatible with relativistic
representations, we impose a synchronous integration of time and space, al-
lowing the agents to internally diverge from or re-interpret this global syn-
chronization as they wish.
A simulation is driven by an agent we call the root subject, which implicitly
has its own subjective view of space and time. The global synchronization
mechanisms we use could be said to represent the dimensions seen by this
agent. However, this ordering is also enforced upon the various agents within
the simulation as they interact with each other. In other words, each agent
within the simulation is forced to inherit the total ordering of events as expe-
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rienced by the root subject, even if they are not aware of its existence. This
assumption should not cause any limitation representing events and phenom-
ena whose scales are compatible with human history and experiences.

3.5.2 Arrow of Time

A large catalog of work exists on the “arrow of time” in terms of thermody-
namic and cosmological laws [49]. Physicists do not agree on the nature of
the forward progress of time; it is at best negotiable what implications exist
about causality, reversibility, the direction of increasing entropy, expansion
or contraction of the universe, etc. We leave our mention of it at this rudi-
mentary level, because to include this type of question in our research or to
leave open the configuration and modeling possibilities would require an un-
tenable amount of time and would probably not result in a working system
at this stage.

3.5.3 Arbitrary Dimensions

In a general modeling system, the number of dimensions seen by an agent
must be flexible. Typical agents may measure a data point as a function of
time (e.g. a thermometer), as a function of two-dimensional space (e.g. a
topological elevation map) or three-dimensional space (e.g. an air quality
model), or four-dimensional space and time, (i.e. a three-dimensional model
which changes over time).
Other dimensions could include the string- and superstring-theoretic addition
of eleven to over twenty dimensions, including small dimensions in some
cases [48], or could include concepts of parallel planes of existence or modes
of agency, such as a single agent acting under many different prototypical
roles simultaneously, and having various perceptions and abilities but a single
cohesive awareness of the world.
Throughout this thesis, time and space will be considered four-dimensional,
and agents may be aware of any number of these dimensions. Arbitrary num-
bers of dimensions outside these views of space-time are beyond the scope of
this work, but the design proposed is compatible with arbitrary dimensions.
We also include this in Future Work (Section 6.1).
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Design

In this chapter, we describe how we have incorporated ideas from other re-
search areas into our system design. These ideas and the designs they in-
formed collectively allow multi-agent, multi-scale simulations to take place
in Thinklab.
Figure 4.1 shows a general overview of the work done for this project. Scale
mediation is composed of a few steps, each of which has specific design ele-
ments. An agent observes its subject by requesting specific properties from
a scale mediator which is dedicated to observing one subject agent over its
lifetime. Each such request is made for a specific observation time and for
a specific observable property, and the result is filtered through the agent’s
perception filters. The scale mediator may return a result by a number of dif-
ferent routes. It may contain a cached result in the desired scale which can
be returned immediately, or it may also contain an intermediate vector rep-
resentation of the subject agent during the observation time which can be
quickly generated into the desired scale. If neither of these are present, it
will have a reference to the subject’s agent-states over time from which it can
generate the two representations mentioned above. All subjects’ agent-states
are kept in a single authoritative observation controller during a simulation.
Agents proceed through time by generating new agent-states and reporting
them to the observation controller, which in turn updates all affected scale
mediators through a standard publish/subscribe mechanism.
Incorporating multiple scales into Thinklab is not as simple as introducing
a single data conversion technique. The multiple scale problem creates a
different set of challenges for different types of agents, different types of ob-
servations, and different system functions (observation, collision detection,
messaging); all of these areas must be compatible with a unitary semantics
for scale and scale mediation.
Time is a dimension with peculiar characteristics. Entire fields of physics
are devoted to its inconsistency and directionality, and to addressing limita-
tions it places onto phenomena and events (causality, speed of light, event
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Figure 4.1: Overview of observation components in Thinklab.
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Figure 4.2: The observation and agent-state cycle in Thinklab

horizons, etc). In our domain, time is irreversible; it cannot be reasoned
with other than in the forward causal direction. As a simulation platform,
Thinklab must handle taking steps that generate unpredictable results and
emergent behavior that cannot be predicted in advance. This corresponds to
the main goal of simulation in the first place: to show results of what cannot
be proved or modeled mathematically. Therefore, the forward direction of
time is an essential feature which is unique to time and does not exist in other
dimensions such as space. Also, there are abstract and theoretical dimensions
which we did not implement but we must allow for (see Section 3.5.3). These
include the theoretical dimensions of string theory, the abstract dimensions
of viewpoints and interpretation, etc.
The rest of this chapter is organized as follows: Section 4.1 discusses the se-
mantic model we created to consistently and explicitly handle multiple scales
and to allow agents to reason about scale and scale mediation; Section 4.2 cov-
ers how scale mediation strategies were incorporated into the system; Section
4.3 describes how agents’ perception can differ subjectively, allowing agents
with different characteristics to interpret the same environment differently;
and finally, Section 4.4 explains the execution model which converts the se-
mantic specifications into concrete computational steps during a simulation.

4.1 Semantics

Here we give the semantic model for observations in Thinklab. Some of the
design here was already in place prior to the start of this project, but adap-
tations had to be made to accommodate the forward progression of time and
agents’ ability to reason about scale and scale translation.
Because Thinklab is a simulation system based on agent observations, its ex-
ecution flow is primarily centered around the cycle of agents’ observations
and subsequent state changes (see Figure 4.2).
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Figure 4.3: Agent Type Hierarchy for Thinklab

4.1.1 Agent Types

This section is a summary of the Agent object in Thinklab, which is imple-
mented as a hierarchy of Java classes and corresponds to the basic categories
of agent types in literature (see Figure 4.3).
Agent types are described in Section 2.1.3, and the Java classes we imple-
mented are described in Section 5.1.1.
In Thinklab, agents fall roughly into four categories that differ according to
perceptual and reasoning abilities. Theymight (i) have no reasoning ability at
all (information carriers), (ii) apply layered rules (reactive agents), (iii) have
internal state and logic (deliberative agents), or (iv) have more complicated
interaction/organization (social/organized agents).
Athanasiadis’ information carrier agents [4] correspond to the messaging sys-
tem planned for Thinklab and to models generated by field-collected data,
neither of which can perform reasoning of their own. These types of agents
act only as subjects (rather than observers) during a simulation.
Implementing specific classes of agents is done by extending one of these
classes, or an instance of a class can be created as is. Agents in Thinklab are
created by issuing an observe statement in the ThinkQL language that speci-
fies the concept they should incarnate and any pre-defined initial state (such
as their initial scales and locations in time and space). Models (defined with
a model statement) can be defined independently and are paired to agents
intelligently to provide them with behavior that reflects context and external
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conditions, and can change during the course of the simulation.

4.1.2 Agent Interaction

For communication, agent systems typically employ either a directory service
to allow agents to find each other, or a blackboard system to allow agents to
send messages in a more anonymous fashion. In Thinklab, the discovery sys-
tem is merged in the abstraction of the resolver, a component that dynamically
resolves dependencies stated in terms of ontological concepts to specific mod-
els (agent behaviors and state computation algorithms) which are applied to
observe information for the requested concepts. The resolver will also pro-
vide agents with appropriate scale translation mechanisms, because it is the
software component that will be aware of the native scales of the subject and
observer agents.
Although many explicit agent interaction types exist in literature (see Sec-
tion 2.1.4), we have not specifically designed any interaction protocols. We
provide an API by which modelers can create interaction mechanisms, acces-
sible both through Java and through the Thinklab modeling language, and
we also provide a messaging system which fits into the ontological semantics
of Thinklab. The messaging system treats messages as lightweight agents,
because they fit our agent definition quite well: they are produced by other
agents (a characteristic of agents which come into existence during a simu-
lation), their properties are expressed in a native scale, they are temporally
bound and possibly temporally dynamic (if they expire or degrade, for in-
stance), and they can be observed subjectively by other agents by invoking
the scale mediation mechanism in Thinklab.

4.1.3 Temporal Scale

Scale is an arbitrary-dimensional concept. Depending on the interpretation
and the purposes, time, space, and other dimensions may or may not be
treated differently. We made the decision that time is a unique dimension
with different characteristics than spatial or abstract dimensions. Two char-
acteristics are essential to time as we have incorporated it: 1) causality is
one-directional; and 2) time is a single continuous dimension which can be
evaluated in isolation from other dimensions. Neither of these two are es-
sentially true at the core of physics, but for the purposes of a machine-based
agent simulation, and according to the simplifications we have chosen for our
model of physical reality (see Section 3.5), they hold consistently and have
been essential for allowing us to implement Thinklab in a straightforward
way.
Thinklab allows both irregular and subjective scales in all dimensions includ-
ing time. Our temporal semantics align with Functional Reactive Program-
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Figure 4.4: Agent observations using globally synchronous, locally subjective time
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ming (FRP) (see Section 4.4.5); specifically, we tried to adopt a model com-
patible with push-pull dynamics by distinguishing between the discrete and
continuous components of real-world phenomena, and by distinguishing be-
tween times when meaningful events happen and times in which they do
not.
Agents are only able to make decisions at specific points in time which we
call observation times. These points are the equivalent of FRP’s discrete event
components of behaviors, and are the times when agents’ decisions cause
meaningful changes to agent-states. In agent perception, observation times
do not represent discrete points in time: simply, time does not exist between
them, as the perception of time make the time domain a continuous one in
each agent. Therefore, between observation times, agents’ observable state
functions do not change, but the functions can be evaluated continuously
along the intervals between points. These functions are the equivalent of the
continuous components of behaviors in FRP, and represent periods of time
when no meaningful changes are happening beyond what is expressed by the
state functions.
This structure leads to an overall dynamic where each agent is allowed to
proceed along a totally subjective temporal scale, making decisions at inter-
vals appropriate for the agent, and changing state over time in both discrete
increments and continuous intervals. These subjective time scales are syn-
chronized by using globally-synchronous values for time to enable agent ob-
servation as described below.

4.1.4 Temporal Synchronization

We have decided to use a globally-synchronous timer to allow Thinklab to co-
ordinate agents which may be unaware of each other’s temporal scales. Each
observation is made by an agent at a specific time, which is subjective to the
agent and does not correspond to any other agent’s time scale. This obser-
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vation time is converted into a globally synchronous time value by Thinklab
so that consistency between agents can be enforced (Figure 4.4). As agents
make decisions and take action, the state changes that occur as a result of
those actions are recorded with globally-synchronous time values.
An agent may or may not know its position in space and time. The model-
ing of this is left to the mechanisms internal to each agent: all observable
properties in the simulation are available at all times to all agents, but the
implementation of the agent decides what is perceived of these properties (see
Section 4.3). However, one restriction is enforced: only properties that have
become valid before an observation time are observable during the observa-
tion (see Section 4.1.6).
Agents’ schedules of temporal awareness are allowed to proceed by whatever
time steps are deemed appropriate, fully disconnected from the globally syn-
chronous simulation clock. Thinklab contains a mechanism as part of the
agent API which transparently makes these conversions on the behalf of the
agent, so that agents are not aware (through this mechanism) of the global
time but live fully within their subjective experience of time.

4.1.5 Observation Times

An observation is made of a subject agent by an observing agent at a specific
instantaneous observation time. All agents operate according to discrete, sub-
jective time scales made up of contiguous intervals of arbitrary and possibly
heterogeneous duration. Agents perceive their scales to be a continuous series
of observation times, between which time does not exist, but in the system
a time scale is represented as a series of intervals bounded by these discrete
instants. Agents may make observations during each observation time that
their scale puts into existence between the intervals. An observing agent can
make any number of observations (including zero) of other agents during an
observation.
After all observations implied by the model are made by the observing agent,
the latter, when its semantics allows, has the ability to make a decision and
act upon the world. As required by the use case scenarios in Section 3.4,
decisions can be made in reference to simple observations (e.g. move away
if color == blue), thresholds (move away if income < 1000), or aggregate
functions (move away if sum(population) > 100000). Actions may change
the states and scales of other agents besides the observing agent through what
we have termed collisions, as a reference to the field of collision detection. For
instance, a rock might hit and wake up a hibernating bear, who otherwise
would have not experienced the next four weeks of time at all. State changes
can only disrupt the states or scales of any other agents through collisions;
by default, they only modify the observable properties of the agent making
the state change.
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Time Period

Figure 4.5: Exclusive-start, inclusive-end semantics for time periods

4.1.6 Exclusive-Inclusive Time Periods

From the point of view of the system, agents operate by making observations
and decisions at specific observation times according to their subjective tem-
poral scale. Any observations made at an observation time will be based on
agent-states which are valid up to and including the observation time, and
the observable result(s) of any decisions made become active immediately
after as they are made. Using normal interval notation, we would write these
exclusive-inclusive periods of time as (tx, tx+1].
This assumption reverses common practice for interval semantics, and for a
good reason. It most closely resembles the real world, in which the effect of an
action becomes “real” the (perceivable) moment after the action takes place.
A direct effect of this interpretation is the avoidance of circular references,
again exposing their fictitious nature due to the oversimplification of event
occurrence in simulated systems.
The end time of the period of validity is not required; state(s) can remain
valid indefinitely by setting an INFINITE end time. This kind of time rep-
resentation is useful in simulating, for example, systems driven by real-time
data acquisition, or an agent’s expiration which will never be re-evaluated.
In our diagrams, we show each observation time as a circle with open and
closed halves to illustrate the exclusive start (open half) of the state coming
into existence and the inclusive end (closed half) of the state which is expiring
(see Figure 4.5).

4.1.7 Agent-States

As agents proceed through time, their observable states change at specific
points in time (observation times) and remain effective during the time pe-
riods bounded by the observation times. We refer to each time period as an
agent-state time period, or simply agent-state for brevity.
An observing agent observes a subject agent by first identifying the state dis-
tribution function for the subject’s desired observable property that is valid
at the observation time, and then solving the function for the observation
time t (Figure 4.6). The state distribution function expresses the value of an
observable property of the subject agent in its native scale. After the state
distribution function is evaluated, the result is converted into the observing
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1. Get state distribution function for t 2. Agent state = fx(t)

f3f2f1 f2(t)

Figure 4.6: Evaluation of a subject’s state may use deterministic or probability-
distribution functions, rather than constant values

agent’s preferred scale and made subjective by applying the observing agent’s
distortion filters.
By mathematical definition, an agent A makes observations at times tx ∈ TA,
each of which produces an agent-state function fx in its agent-state series FA.
Agent-state functions express a probability distribution of values for each ob-
servable property of the agent; they are functions of both Time and Property:

TA = {t1, t2, . . . , tn}

FA = {f1, f2, . . . , fn}

fx : (Time,Property)→ State

state(t,p) = fx(t,p) for max(x) : tx < t

Strictly speaking, TA ∈ R, but software implementations of time will gener-
ally introduce some level of discretization.
A state distribution function can be any distribution over a set of state func-
tions of the independent time and space dimensions. The range of a state
function is the domain of the property being observed. A state distribution
function is capable of expressing a single constant value, a single path func-
tion (e.g. a ball moving through the air), a probabilistic distribution over
constants, or a distribution over functions. Throughout this thesis, we refer
to “observing an agent’s state”; it is implied that the state distribution func-
tion is being observed.
This design fits with the concepts of endurants and qualities of formal on-
tologies. Endurants hold identity throughout the life span of an entity, in-
dependent of changes in state. Qualities are not entities of their own, but
they describe entities and can be bounded in time. In Thinklab, agents are
endurant entities and their agent-states are qualities that change over time.
Agent-states are composed of any number of properties, which are attached
to ontological concepts just like agents themselves are. It is possible that
agents express different properties during different time periods; even if an
agent expresses no properties for a time period, Thinklab will store an empty
property-value mapping for that agent-state.
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4.2 Mediation Between Scales
In this section we describe the design of the scale mediation system, which
allows agents in Thinklab to observe one another despite their differing views
of space and time.
The scale mediation system includes a strategy for selecting scale mediators,
and the scale mediators are components which are inserted between an ob-
server and a subject at the time the observer’s dependencies are resolved.
The scale mediator is composed of interpolation, intermediate representation,
and output caches at potentially many scales. We have attempted to make
the scale mediation system as modular as possible to facilitate module reuse,
and we have also tried to make the scale mediation process as modular as
possible to facilitate reuse of interpolated results.

4.2.1 Optimal Agent Scale

If a given agent operates at a given scale, then that agent will optimally make
observations of dependencies which are at the same scale. The existing resolu-
tion mechanism in Thinklab does not take scale into account, although that is
an intended upgrade being implemented outside the scope of this work. Cur-
rently, the resolution mechanism finds observable models that are capable of
fulfilling requirements stated ontologically, and selects the model with the
best coverage given the context of observation. The resolution mechanism in
Thinklab will be able to prioritize models that are best suited to delivering
the most appropriate scale and granularity, those with more efficient conver-
sion computations over less efficient ones, and also it will be able to filter
its selections based on both objective information and user-provided quality
assessments. (See Section 4.2.3 for more information on mediator selection.)
This will allow the system to minimize computation associated with scale
translations by using agents that share a common scale whenever possible,
and using the best available mediation strategies when agent scales differ.
Of course, this prioritization must be parameterized so that circumstances
can dictate preference for speed, accuracy, coverage, availability of efficient
mediators for the given domain, etc.

4.2.2 Intermediate Vector Representation

Many scale mediation algorithms inherently have an intermediate step that
can be represented in vectorial form. For instance, linear interpolation is a
technique that draws a straight line between each pair of neighboring points
(in two dimensions; the equivalent three-dimensional technique is called tri-
angulation, and connects neighboring coordinates by means of triangular sur-
faces). This type of scale mediation generates discretized points by first gen-
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erating the linear functions, and then solving those functions at each discrete
point.
Linear interpolation uses purely straight lines, but other types of vectors can
be used as well. Some strategies generate spline functions, which are general-
purpose, configurable curve definitions commonly used in vector graphics.
Other strategies use domain-specific vector representations which can be
mathematically more complicated but still provide desirable functionality for
the scale mediator design we have chosen.
Mediation algorithms which inherently use some continuous intermediate
representation have the advantage that these representations can be cached
inside the mediator object and re-used for generating new observations of the
same underlying phenomenon at different scales. Some algorithms produce
interpolated data points without ever generating an intermediate representa-
tion; for instance, IDW (Inverse Distance Weighted) interpolation is a tech-
nique for “querying” a certain point for its observation value. As mentioned
in Section 2.3.1, IDW generates data points f(x,y) based on some number of
input values v(xi,yi) in the neighborhood of (x,y):

f(x,y) ≈
∑

iwiv(xi,yi)∑
iwi

where wi ∝ (distancei)
p

≈
∑

i

(√
(x− xi)2 + (y− yi)2

)p
v(xi,yi)∑

i

(√
(x− xi)2 + (y− yi)2

)p
All parts of the formula depend on the value chosen for (x,y), including which
values v(xi,yi) are chosen to represent the neighborhood of (x,y). To gener-
ate a concise representation, the boundaries where the neighborhood compo-
sition changes would have to be generated; this is at best non-trivial, and still
the developer is faced with representational problems. Simply, when using
IDW there is no concise intermediate expression of the set of all generated
values, as there is in other techniques.

4.2.3 Scale Mediator Selection Strategy

Scale mediators can be categorized by many different features: those which
have a continuous intermediate representation vs. those that do not; differ-
entiable vs. non-differentiable; number of dimensions which can be handled
by the scale mediator, O(n) performance, etc. These can be required by the
relationships between ontological concepts or by a user running or testing
the system.
Requirements are attributed by using reasoning on the ontological concepts
because it is the concepts that determine the mathematical characteristics of
the feature being modeled. Requirements can be stated for specific mediators,
classes of mediators, or arbitrary features for which mediators can be tagged.
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A scale mediation strategy is selected for each relationship between two
agents based on a layered preference model:

System Default Global default system-wide preferred scale mediator. This
will most likely be the “nearest neighbor” algorithm because of its sim-
plicity and performance.

Ontology-Relation-Specific Default Thinklab can be configured with spe-
cific mediation requirements for each ontological dependency relation-
ship. This will be specified at the “relationship” level to accommodate
domain-specific criteria. For instance, computing slope based on an el-
evation map may require that the mediated data set is differentiable;
i.e. that dy/dx is continuously computable.

Runtime Parameters Thinklab could accept parameters on the command
line to use specific scale mediators as overrides for the above selections.
For instance, a simulation parameter could dictate that mediator x is the
new system default, or that x is always used for translating from model
M to N, or that mediator x is used in place of mediator y whenever it
is requested.

Available scale mediators are filtered in the order Runtime→ System Default.
If at any stage in the selection process the list of qualifying mediators is empty,
then Thinklab will select the most appropriate mediator from the previous
list. We have not yet determined a good algorithm for determining the most
appropriate mediator; one idea would be to throw out the selection criteria
that made the list empty and continue without it. The algorithm should also
require that the scale mediator is compatible with the number of dimensions
and with the subject and observer scales.

4.3 Subjective Agent Perception
Real-world agents and their simulated counterparts will generally have fi-
nite and possibly inaccurate sensory input, and possibly systematic bias such
as humans’ inability to place certain sound frequencies in three-dimensional
space. To allow different agent types to process observations differently, we
chose to incorporate into the agent semantics a distortion mechanism, which
is a collection of filters that can be applied to incoming information so as
to distort, enhance, degrade, skew, stretch, or otherwise change it as it is
processed by the agent.
Essentially, we have separated the act of observation into the external process
of information gathering and the internal process of perception. In Thinklab,
the external information gathering is performed by observing other agents’
properties and converting them to the observer’s scale by scale mediation;
perception is internal to the agent. By doing so, we have emulated nature
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by differentiating between the outward natural phenomena and the inward
interpretation of and response to the phenomena by interactive beings.
The perception filters can be as simple or complex as desired. For instance,
it is possible to create an “ultimate” agent in Thinklab which observes every
agent’s properties in the simulation, over all time and space at the finest level
of detail in the system. The only constraint is that observations occur at a
specific instant in time and are not allowed to observe the future. This is
not a semantic restriction to limit the power of ultimate agents, but rather
a necessity of our implementation. Collision detection and dependency res-
olution would be impossible if we allowed future observations, and future
observations are of no practical use in Thinklab anyway.
As an agent makes an observation, the necessary properties are collected from
the appropriate subject and delivered to any filters which may be present for
that agent. After the filters have been applied, the agent receives the observed
property in its modified state and may then perform its reasoning.

4.4 Execution Model
The execution model of a Thinklab simulation is summarized in Algorithms 1
and 2. A Thinklab simulation begins with agent initialization. Agents are cre-
ated (explicitly for the root agent, usually based on observed evidence from
datasets for subordinate agents) and initialized with states that are valid dur-
ing the instant of time that starts the simulation. States expire at varying
times as appropriate for each agent’s temporal scale. After all agents have
been initialized, observation tasks corresponding to the expiration time of
each agent-state are placed in an observation queue. Each agent-state expi-
ration time is an observation time when the agent will make new observations
and generate new agent-state distribution functions for the following time
interval (see Section 4.1.5).
Once the observation tasks are created and placed on the observation queue,
the system starts a loop of computing agent observations and adding subse-
quent observation tasks to the queue. When all observations have completed
and the observation queue is empty, the simulation is finished. Agents may
follow a regular or irregular time scale; Thinklab is completely indifferent
and is not actually aware of agents’ time scales. Agents manage their time
scales internally, and it is up to each agent whether it generates an entire
schedule when it is initialized, or generates each successive observation time
as it proceeds. Even if the scale is generated upon initialization and is com-
pletely deterministic (such as a soil quality agent with a daily or seasonal
re-evaluation cycle), it reports each observation time to Thinklab in real time
during the preceding observation.
Agent-states are not required to change at each observation time, but agents
must explicitly re-declare their states and state expiration times, or Thinklab

51



Chapter 4: Design

Data: rootAgent with initial state; empty temporalGraph,queue,
and processing objects

Result: fully computed simulation
begin

InitializeAgent(rootAgent,queue, temporalGraph)
while |queue| > 0 do

task← pop the next task from queue

add task to processing

result← execute task

remove task from processing

agentState← agent-state from result

add agentState to temporalGraph

relationships← causal/influential dependencies from result

for relationship ∈ relationships do
add relationship to temporalGraph according to type

end
subsequentTasks← additional tasks which result from task

for subsequentTask ∈ subsequentTasks do
add subsequentTask to queue

end
end

end
Algorithm 1: RunSimulation

Data: agent with initial state; queue and temporalGraph objects
Result: fully initialized queue and temporalGraph

begin
agentState← initial agent-state from agent

add agentState to temporalGraph

task← new observation task for agentState expiration time
add task to queue

subjects← observable subjects of agent
for subject ∈ subjects do

InitializeAgent(subject,queue, temporalGraph)
end

end
Algorithm 2: InitializeAgent
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Figure 4.7: State-transition diagram of the agent life cycle

will consider the agent to be dead (see Section 4.4.1). Any agent-state which
is requested by an observer agent but has not yet been computed will cause
the observer agent thread to go to sleep. (Technically, the observer is given
a future value to delay the sleep if possible, but if the observer calls Future
.get() before the value is ready, the sleep is invoked.) Thinklab remains
extensible so that agents can be optimized further if developers would like to
implement more sophisticated sleep/wait semantics, team dynamics, etc.
Thinklab initializes agents with agent-states that have some temporal dura-
tion. The initial agent-state created for each agent applies to the agent’s first
temporal extent, according to its subjective temporal scale. Two other de-
signs would have been possible: either we could have used non-temporal
initial states and designed a completely separate path of execution that hap-
pens at the start of a simulation (surely an exercise in code duplication), or
we could have initialized agents with temporal states of zero duration and
added special-purpose conditions in the code to consider zero-duration states
“valid” if they occur at the start of a simulation. Either technique would have
led to special-purpose code which breaks the strict semantics we have chosen
to simplify observations, and would have probably led to code duplication.

4.4.1 Agent Life Cycle

This section discusses the agent life cycle that happens during a Thinklab
simulation. All agents will experience birth; they may or may not experience
life or death. (Agents in atemporal simulations will experience neither.) A
state-transition diagram showing the agent life cycle is given in Figure 4.7.

Birth

Thinklab creates one agent as a result of an observe command. This agent
is called the root subject. When the agent is created, Thinklab associates the
best model it can find with it (or create a base model if none are found). The
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model associated by Thinklab to the root subject may introduce dependencies
on other agents, and these may have other dependencies, and so on. If so,
observations are triggered to resolve all dependencies to states and agents. All
agents that are necessary to provide an initial observation of the root subject
are created at the start of the simulation according to their start-up semantics.
If Thinklab is unable to produce enough observations to maintain the root
subject with semantic consistency, this constitutes a failure condition.
As the simulation proceeds, agents are allowed to create other agents. The
most common use of this feature is for agents to send messages to each other
(see Section 4.4.2), but other scenarios are possible as well.
As in other parts of Thinklab, agent creation can be a cascading effect: an
agent that is created at runtime may have dependencies of its own that are
not yet present, and therefore new agents are created as a result of observing
those dependencies, and so on. Dependencies may be stated in a conditional
manner that depends on states observed before, which may lead to the se-
lection of a different model to complete the observations, so the results of
the initial observation may constitute all the modeler is interested in. Hence
even atemporal models can be used to accomplish significant modeling un-
dertakings.

Life

Once agents have come into existence, they maintain contiguous agent-state
values for all periods of time during their life span. The momentary bound-
aries between agent-state time periods are the points where Thinklab allows
the agent to make observations and decisions, and take action accordingly.
After this, Thinklab enforces that another agent-state time period is created
which starts at the time that the previous one ends (i.e. at the observation
time). No gaps will ever exist between agent-state time periods for an agent.

Death

One possible outcome of an observation/decision is that an agent dies. In
this case, the agent would not create a new agent-state interval and no fur-
ther observation tasks would be added to the observation queue for the agent.
Because no valid agent-state would exist for that agent after its final observa-
tion time, other agents could not make any observations of it.

4.4.2 Messaging System

The messaging system in Thinklab is not an independent component but
rather a protocol that leverages the resolution, observation, and collision sub-
systems. Sending a message consists of three steps:
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Figure 4.8: Cyclic dependency resolution using exclusive-start, inclusive-end time pe-
riods

Discover the recipient of the message using the resolution mechanism. Usu-
ally the message recipient will already be known by the sender at the
start of a simulation via a resolved dependency, but the resolution mech-
anism can also be invoked at run time as a directory service for this
purpose.

Create the message by instantiating a message object. Messages are light-
weight agents which follow the same observational and temporal se-
mantics as other agents.

Send the message by creating a specialized collision event. The collision sys-
tem in Thinklab is a way of interrupting agents at times other than their
self-imposed observation times, but also functions as a message deliv-
ery service. Agents are free to respond to messages (possibly changing
their time scales and agent-state expiration times), or ignore them.

4.4.3 Cyclical Dependencies

As noted in Section 3.1.1, circular references are different from cyclical depen-
dencies. Circular references do not exist in the real world, but are an artifact
of the ways models are represented. Thinklab provides safeguards against cir-
cular references in two ways: during agent initialization via static (atempo-
ral) circular reference detection, and at runtime via exclusive-inclusive time
period semantics.
The initialization-stage dependency resolver avoids circular references during
initialization of the agents by throwing a ThinklabCircularDependencyEx-
ception. This will occur when a cycle exists in the dependency graph for the
agents in a simulation, where no agent-state can be initialized because of the
cycle. (It is possible that a cycle exists which can be resolved by observing
supplemental data sources. Thinklab will automatically attempt to resolve
cycles in this way, and if successful, no exception will be thrown.) If a user
runs a simulation which throws this exception, then the simulation stops and
the parameters or models must be modified.
At runtime, the exclusive-inclusive time period semantics (Section 4.1.6) and
temporal observation rules prevent any circular references from occurring
(Figure 4.8). Temporal observation rules stipulate that as the simulation
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proceeds forward in time, all observations are made at a specific instant in
time, and agent properties which are observed must be valid during that time.
agent-states which are created or modified during the same instant are not
valid until just after that instant.
Thinklab operates with a synchronous global event clock, which opens up the
possibility of contradictions of causality in simulations. Without explicitly
identifying the distance between agents and the amount of time between an
action of agent A and the observation or impact on agent B, we use this
technique as a way of enforcing that the impact on agent B must be at least
some minimal amount of time after the action of agent A.
Because all computing environments operate with discrete values, all imple-
mentations of time will necessarily have some minimal granularity. Coupling
this constraint with our exclusive-inclusive semantics means that any effect
which A’s action has on B must necessarily occur at least one granular unit
of time after the action is made by A. (In the reference implementation of
Thinklab, we use the joda-time library which uses a granularity of one mil-
lisecond.) If we did not impose these temporal semantics, then it would be
as if temporal delays between cause and effect did not exist and agents were
capable of influencing each other in simultaneous instants.

4.4.4 Collisions

Collisions may change agent-states after they have been computed. By the
observation semantics we have chosen, no collision can ever change a state
prior to the collision time, but it may cause an agent-state time period to end
sooner than it had previously, and a new agent-state time period to begin at
the collision time.
It is also possible that an entire agent-state becomes invalid if cascading in-
validations occur. In this case, Thinklab would invalidate the entire affected
agent-state, rather than partitioning it into the portion that remains valid
before the collision and the portion which must be re-computed after the
collision.
The collision/invalidation mechanism in Thinklab will cause any dependent
observations to be re-computed in a cascading manner. To accomplish this,
causality links are recorded for all observations. Agents must re-compute
their agent-states by responding to the collision event, taking the new colli-
sion information into account. They are free to ignore the collision, generate
a new agent-state for the partition using the original agent-state end time,
or generate a new agent-state with an arbitrary end time. The last option
requires that any observation task which had been queued for the agent is
updated to reflect the new observation time.
For agent-states to collide they must coexist. No further restrictions can be
made a priori by Thinklab, because we have not stated any limitations for
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causality other than exclusive-inclusive semantics. Also, there is no limit to
our definition of “collision” beyond the requirement that agent-states over-
lap in time. Thinklab does not have any knowledge of communication or
movement mechanisms which the agents may be employing, so agents which
overlap in space or communicate over other kinds of information transfer
may collide with each other in specialized ways about which Thinklab would
know nothing.
Static (a posteriori) collision detection algorithms will probably not be a good
class of solutions for our semantic model, because they are built on the as-
sumption that object positions are re-computed at some frequency of time
steps. Our model makes no assumption about the frequency of time steps, or
their relation to agents’ motion in space (or any other agent behaviors which
may cause collisions). Rather, the task of collision detection in Thinklab can
be described as discovering the collisions which happen between time steps.
Because of this, it seems as if we are bound to using only the closed-form col-
lision detection algorithms. We do not preclude the use of static techniques,
but our semantic model is a much better fit for dynamic ones.
Collision detection algorithms will not be handled in this project, as their
proper handling constitute an academic field of its own. Instead, we only
provide the semantic model described here, within which collision detection
must happen, and defer to this field for appropriate solutions. See Section
6.1 for more information.

4.4.5 Functional-Reactive Programming

We have taken inspiration from Functional Reactive Programming (FRP)[13,
15] in two ways. The first is by representing objects in the most natural way
possible by using continuous representation and by not discretizing except as
an output step when needed. The second is by separating the discrete and
continuous components of temporal phenomena. (We also use a third concept
in FRP, future values, but this idea originated elsewhere.)
One early implementation of FRP used Interval Analysis as a technique for
optimizing computation; event detection is only performed during time in-
tervals where events might happen, and time intervals where no events can
happen are not analyzed.
Push-Pull FRP extends these optimizations by propagating data differently ac-
cording to whether it changes discretely or continuously. Discretely-changing
values are pushed to any component of the system which is affected (much
like an Observer design pattern [18], or like event-driven programming), and
continuously-changing values are pulled by the observer on demand.
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Continuous Representation

There are two main benefits to using continuous representation semantics to
model real-world phenomena: 1) continuous representation can more accu-
rately describe the real world; and 2) when discretization is necessary, con-
tinuous representation provides flexibility in dealing with multiple scales of
granularity. Accordingly, we have incorporated continuous representation
into the execution model in two ways.
The first is by representing agents and agent transitions using continuous
values when possible. In many cases, agents are data sets collected from the
field and are inherently discrete; these agents are represented in Thinklab in
their natural, discrete scale. But other agents generate their states and can
use continuous values to represent themselves. These agents can also express
their state transitions fluidly by reporting them directly, instead of reporting
a new agent-state at each transition.
The second is by creating scale mediators (Section 4.2) which store a con-
tinuous intermediate representation of the agent they are connected to. The
primary benefit for this design is when the scale mediators must present agent-
states at multiple discrete scales. Instead of re-generating each scale from the
original each time, the intermediate representation can be discretized into
whatever scale is necessary. As mentioned in Section 4.2.2, many scale me-
diation algorithms inherently have an intermediate step which can be repre-
sented in a vector form. It is this vector form which is used as the continuous
intermediate representation of the agent being observed.

Interval Analysis

Interval Analysis (IA)[52] is a technique used by one implementation of FRP
to determine when events will not happen so that computation effort can
be focused on analyzing when events might happen. In Thinklab, we have
enforced well-defined times when events happen through our temporal event
semantics, which removes the need for IA.
The classes of events in Thinklab are observation times and collisions, each of
which can only happen at well-defined times. Observation times are always
known a priori because agents are required to state their next observation
time as a result of each observation (see Section 4.1.5); collision times can
be known through collision detection (see Section 4.4.4) or through explicit
collision creation, as is done in the messaging system (see Section 4.4.2). No
other event times exist in Thinklab, so there is no ambiguity for which we
need to optimize through analysis techniques such as IA.
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In General Discrete Continuous
Event Discovery “pushed” by actor “pulled” by observer
Programming Style imperative functional
In FRP
Concept Name event behavior
Value Name reactive value time function
Knowable A Priori depends on context fully knowable once generated
In Thinklab
Concept Name observation time agent-state time period
Value Name observation/decision agent-state function
Knowable A Priori event time only fully knowable once generated
Consistency Requirement required for valid agent-state executed only on demand

(inherently consistent)

Table 4.1: Push-Pull dynamics in Functional Reactive Programming and in Thinklab

Push-Pull FRP

Push-Pull FRP [15] is an implementation of FRP which takes more optimiza-
tion details into consideration. It distinguishes between discrete reactive val-
ues and non-reactive, continuous time functions, two semantic methods of ex-
pressing time-varying values. Push-Pull FRP models real-world activity using
reactive behaviors which are composed of these two time-varying components.
A summary of the differences between discrete and continuous is in Figure
4.1.
Our temporal observation and behavior semantics compose these discrete and
continuous components into one cohesive model for agent-state changes, sim-
ilar to FRP’s reactive behaviors. We stop short of analyzing the similarities
between agent-states and reactive behaviors, though, because of the differ-
ences between our implementations.
As in FRP, we must accept that some processes in our system such as run-time
decision making are stochastic. What this means in Thinklab is that, at every
observation time, an agent may potentially make a decision which affects its
state in an unpredictable way. We cannot take shortcuts by skipping obser-
vation times where agents decide to be inactive, because we cannot know
whether an agent will be inactive until that agent’s decision computation has
been performed. (We would like to relax this assumption; we leave possible
implementation techniques to Future Work in Section 6.1.)
Without doing additional work on detecting when agent decisions can be
skipped, we have designed our observation system with the assumption that
all observations will necessarily be made. Our agent-state functions are flexi-
ble state representations, blending discrete and continuous time-varying val-
ues; in addition, we allow decision distribution functions. A full description
of time-varying observable values is given in Section 4.1.7.
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Push-Pull FRP and Thinklab both make use of future values, a way of provid-
ing a temporary representation for a value that is not yet knowable so that
processing can continue until the value is absolutely needed. Because this is
a standard technique in software engineering and did not originate with FRP,
we leave its treatment to Implementation (Section 5.4).

Discrete Events

Discrete events generate what are called reactive values in FRP. Reactive val-
ues express things like user input, such as key press events, or other instanta-
neous events that modify a property to take on a new constant-valued state.
These events are separated by arbitrary lengths of uneventful time. Discrete
events can be expressed as a step function: they are an ordered series of oc-
currences, each of which is a constant value that becomes valid for a specific
time interval. When the next value in the series becomes valid, the previous
one becomes invalid.
Push-Pull FRP’s treatment of discrete events focuses on detecting when they
may or may not happen, and on the types of states they bring into existence.
We model discrete events differently than FRP because we have the luxury
of knowing the exact time of every agent observation and decision a priori.
Besides this difference, the same properties of discrete events hold for Think-
lab as for FRP. We do not need to perform interval analysis to optimize event
discovery, but we do use discrete event semantics as a way of efficiently mod-
eling agent behavior.

Continuous Behaviors

Continuous time functions in FRP express constantly-changing states which
cannot be computed on an ongoing basis without introducing artificial dis-
cretization, and in general cannot be efficiently computed in a “forward” di-
rection. Instead, it is better to evaluate time functions as needed.
Time functions allow for modeling continuous phenomena like motion
through space which cannot be discretized without losing information. In
Thinklab, continuously-changing states are modeled as agent-state distribution
functions, or agent-states for brevity (see Section 4.1.7). Agent-states come
into existence as a result of decisions made by agents during discrete observa-
tion times, which are the equivalent of Push-Pull FRP’s discrete events.

4.4.6 Distributed Processing Considerations

In Thinklab, causality follows the forward movement of time; events can
cause state changes and collisions, and observations can only depend on states
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which have become valid prior to the observation time. Agents can be created
and destroyed according to events or thresholds.
Thinklab operates with a globally synchronized clock and observation graph,
but it would be helpful from a system design point of view if agents’ inter-
nal processes and localized interactions could happen without any global syn-
chronization. This would allow for parallel implementation and would surely
lead to better performance than with the overhead of total agent (i.e. process)
synchronization.
An optimal implementation taking multiple scales into account would have
agent scales which are completely decoupled from each other, such that there
is no globally consistent scale at all. The final observation of the root subject
which is requested by the user would inherently operate with its own scale
which is presented to the user, but this should not impose any restriction on
other agents.
A fully distributed approach would have two advantages over a serial one in
two primary ways:

Flexible implementation options would allow distributed processing and
the performance gains that come as a result

Simpler agents in terms of their semantic definitions and logistical overhead
needed to run them.

With fully decoupled scales, spatio-temporal boundaries must be synchro-
nized between agents, so that agents can interact with each other, and so
that observable values can be integrated. This task depends only on a master
agent with enough knowledge to position the various agent-states in time and
space. Thinklab performs this task by allowing agents to proceed without re-
quiring knowledge of a global schedule, and synchronizing their observations
and behaviors as necessary.
One potential pitfall exists: the number of threads in a multi-threaded design
must be greater than the number of potential sleeping threads, to avoid an
infinite-wait scenario. The current design specifies that an observer’s thread
should sleep until all of its observable dependencies have been fulfilled; if
all threads are occupied by waiting observers, then no dependencies will be
met. (This is also a shortcoming of our single-threaded proof of concept, but
we have avoided it by the simplicity of our tests; multi-threading capabilities
are a strict requirement to avoid this scenario under the current design.)
We believe we have found a good balance between global consistency and
amenability to parallelization in the Thinklab platform. More information on
our global synchronization semantics can be found in Section 4.1.4.
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Implementation

Here we discuss the implementation of our design, and the engineering is-
sues therein. We have implemented our design in the form of a complete
API which integrates into the Thinklab modeling system, a substantially com-
pleted reference implementation of this API, and a proof of concept using
Scenario 1 from Section 3.4.1. The API contains all components necessary
to facilitate the designs described in Chapter 4, with three exceptions. First,
we have not included convenience functions for creating and sending mes-
sages (although they can be manually created by agents using the technique
described in Section 4.4.2); second, we have not incorporated scale mediator
selection into the TQL language or by automated reasoning (although these
changes will modify the API minimally if at all); and third, we have not im-
plemented any agent perception filters because their treatment is outside the
scope of this work.
UML diagrams of the most important Java classes implemented for this
project are shown in Figures 4.3, 5.1, 5.2, and 5.3.

5.1 Semantics

In this section we describe the ways we implemented the semantic constructs
described in Section 4.1.

5.1.1 Agent and Interaction Types

Agent types available in Thinklab at the time of this writing are information
carriers (e.g. messages and non-dynamic model agents), reactive agents (rule-
based agents), and deliberative agents (imperative-logic agents). While seman-
tics is available in the TQL language to specify these classes of agent, the
definition of agent interaction patterns and protocols is left to the developer
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Figure 5.1: UML Diagram of the main Java classes in our implementation
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Figure 5.2: Inheritance structure of the Scale Mediators
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Figure 5.3: Tasks, Collisions, and Messaging components

for the time being. For the purposes of this work, we capture the agent tax-
onomy as a standard Java hierarchy of Agent types, from which developers
can derive agents aware of specific communication protocols, team-building
strategies, etc.
An essential mechanism for any kind of agent interaction design is communi-
cation. We have developed a messaging component which is a simple re-use
of the collision and observation paradigms designed earlier in this project (see
Section 4.4.2). Because we have not incorporated agent coordination into
our proof of concept, we have left messaging code and tests for later imple-
mentation. However, it is worth mentioning that this implementation only
requires a wrapper function call consisting of a single line of code. A message
is nothing more than a special collision object which is handled by both the
receiver and by the message itself. (Specific message types with appropriate
handling functions must be developed as well.)

5.1.2 Temporal Scale

The ITemporalExtent and ITemporalSeries interfaces were created during
this project when it was decided that the temporal dimension had enough
unique properties to warrant special treatment compared to a generic topol-
ogy type. ITemporalSeries extends ITemporalExtent, which extends IEx-
tent, which had already been a component of IScale before the work pre-
sented here was started.
The directionality of time is represented by a strict ordering of its sub-
extents; ITemporalExtent.getExtent(1) should always return the contigu-
ous extent that occurs immediately after the one returned by ITemporalEx-
tent.getExtent(0). One-dimensionality is expressed by the fact that the
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methods getStart() and getEnd() return scalar ITimeInstant values.
Temporal scales composed of contiguous time periods can be represented
through instances of ITemporalSeries. This interface expresses the op-
erations one would expect to perform on any contiguous linear series
with specialized treatment for time. For instance, ITemporalSeries
.shorten(spliceTime) takes only a single instant as a parameter, and it is
assumed that the caller would like to shorten an overlapping time period
and keep only the portion which falls before the instant. This is due to the
forward-causality of time, and exists to support collision computations: only
the events after a collision are affected and should therefore be discarded, not
the ones before it.
Similarly, ITemporalSeries.bisect(spliceTime, newObject) splits a time
period into two, and attaches newObject to the newly created period (the
other one is only shortened, and keeps its originally attached object). As in
shorten(), the newly created period in bisect() is always the one which
occurs after the splice time.

5.1.3 Temporal Synchronization

To allow agents to operate at different temporal scales, we have implemented
a TemporalCausalGraph class, containing a series of agent-states of arbitrary
duration for each agent. At the end of an observation, an agent reports at
what time its next observation will be. These observations are ordered and
placed into a queue of IObservationTask objects for which the controller
serves requests.
The temporal series (instances of type ITemporalSeries) stored by the Tem-
poralCausalGraph for each agent are not required to synchronize with each
other, other than being specified using absolute, globally synchronous time
values. Agents themselves have perception filters which may imply that these
globally synchronous time values have different meaning and implications for
different agents, but the IObservationController is only made aware of the
time values and does not consider any subjective meaning they may have for
a given agent.
The TemporalCausalGraph is the single authoritative knowledge store for
simulation results. Because it is maintained by the single-threaded IObser-
vationController, synchronization is maintained in the system via the IOb-
servationController API.

5.1.4 Observation Times

At run time, agents report the results of their observations by generating in-
stances of the ITransition interface. Currently, agent-state information is re-
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trieved from the ITransition objects using ITransition.getAgentState().
One of the most important strategies for the temporal synchronization of
observations is using globally synchronous observation times. As a result,
the time values reported by agents at which their observations occur are in
absolute-valued, globally-meaningful time values. The time value that one
agent reports can be understood by another agent unambiguously to mean
a single instant in time. In Thinklab, we use the UNIX time system, which
expresses the number of seconds (and milliseconds) elapsed since 00:00:00
Coordinated Universal Time (UTC), Thursday 1st January, 1970.
Observations are synchronized as their results are reported to the Observation
Controller. The Observation Controller maintains a single authoritative graph
of observation times and the resulting agent-states; all associated time values
share the same temporal measurement system.

5.1.5 Exclusive-Inclusive Time Periods

The agent-states generated by agents at each observation are a set of
property-value pairs valid during some time period. These time periods fol-
low exclusive-inclusive semantics, which we enforce by implementing the
ITimePeriod (for single time periods) and ITemporalSeries (contiguous se-
ries of time periods) interfaces such that instances of them are aware of
exclusive-inclusive rules. These interfaces extend ITemporalExtent.
The creation of a new agent-state happens at the instant of observation, and
takes effect the instant after observation. Reading from existing agent-states
(in other words, performing the sub-observations that are necessary for gener-
ating observation data and new agent-states) will only return states which are
valid at that instant. To determine whether states are valid at a given time,
the ITimePeriodmethods overlaps, contains, endsBefore, etc. were imple-
mented using exclusive-inclusive semantics. In most cases, calling code does
not have to know what temporal semantics are being enforced. The methods
are called using a time instant (ITimeInstant) or time period (ITimePeriod)
parameter, and return meaningful values without needing to state their un-
derlying semantics.

5.1.6 State Distribution Functions

Agent-states are composed of property-value pairs valid during a given time
interval. The values are not required to be constant over the duration of
the agent-state, or even to be scalar or categorical in nature. They can be
functions of time, or they can even be distributions over some number of
functions over time. The values contained in these property-value pairings
are instances of the IState interface.
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Probabilistic or statistical models can be created with agent-state functions
that in place of single values express a probability density function or an
explicit discrete distribution. The statistical or probabilistic values have not
yet been implemented for any agents in our proof of concept, but could be
done easily by implementing the IState interface, or extending an existing
implementation. This interface has methods to store any type of Java object
as an agent property and so is un-constrained in its ability to store complex
values or functions.
Some implementations of IState (specifically, the subclasses of Indexed-
State) already accommodate arrays of values which match the cardinality
of the scale to which the values apply. A similar approach could be used to
store not just arrays of dimensionally distributed values, but probabilistically
or statistically distributed values. Such values could be represented using
special-purpose Java objects (for instance by using a generic class like Sta-
tisticalDistribution<T>), and stored the same as the scalar or categorical
values already being used in Thinklab.
Evaluating a state-distribution function would be a simple matter of calling
IState.demote() to return the bare state-distribution object, and then eval-
uating that object for the evaluation time using a call like demotedValue
.evaluateAtTime(t). Depending on how the usage evolves, this operation
could be rolled into a helper method on the subclass of IState.

5.2 Scale Mediation

Scale mediators were implemented as modular components which can be
dynamically selected at runtime based on the ontologically-defined semantics
of the agents involved.
A simple example is an agent which computes rainfall runoff characteristics
over some area of land by reading the elevation data for the area and con-
verting it into slope values. In this scenario, a scale mediation strategy that
preserves (or creates) differentiability in the surface data will be beneficial to
the slope calculation. This benefit relates to the relationship between concepts
of elevation and slope; it has nothing to do with the agent itself. Because
of this, preferences and selection strategies are used which take ontological
concepts into account.
The decision to use a decoupled mediator takes its inspiration from Depen-
dency Injection [17] and the Strategy design pattern [18]: by decoupling
an object from its strategy, and by leaving instantiation, initialization, and
coupling to higher levels of the system, configuration can be made extremely
flexible, allowing both modelers and developers to finely tune behavior, test
and debug issues, and explore the dynamics of a simulation by focusing on
broad or narrow behavior characteristics as necessary.
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5.2.1 Caching Mechanisms

Push-Pull FRP takes advantage of the fact that push events are represented by
pure data, and are therefore automatically cached in Haskell. Although this
strategy takes advantage of mechanisms unique to Haskell, it applies equally
well to our implementation. Haskell is able to automatically cache pure-data
results not just because it is a well-designed language, but because pure data
can inherently be cached to the extent that it is immutable.
In our environment, push events are triggered by agents making observations
and generating agent-states for the subsequent time periods. We will store
all agent-state results in a graph data structure (see Section 5.4.2), which
will eventually be persisted to a graph database during the course of the
simulation. (The persistence feature is not included in our proof of concept.)
This graph, whether or not it is persisted physically, stores all agent decision
and collision results. It will serve as the core of synchronization and will
provide a full causal history of the simulation.
By intelligently building the components of this graph and the scale medi-
ator objects which translate the states stored in the graph nodes, we have
created an observation-task, agent-state, and cache invalidation mechanism
which can reliably follow the trail of cached information throughout the sys-
tem in the case that an agent-state must be altered after it is placed into the
graph. The cache invalidation event occurs only when a collision is generated
between agents (see Section 4.4.4).
Cached information in the system only represents duplicated information in-
side of the mediator objects. Mediators are allowed to keep two types of
caches: intermediate vector representations and output caches. The latter fol-
lows standard software engineering practice as a method for reducing com-
putational load, and has no features not present in the former. The former has
unique characteristics and is the first cached element within a scale mediator,
so we focus our attention on it.

Intermediate Vector Representation

Many scale mediation mechanisms use an intermediate representation of the
source data which is continuous. As a result, they are capable of generating
arbitrary discrete scales without the need to replicate the mediation process.
Using this property, we can design mediation strategies which are inherently
re-usable and more scalable than if the whole process was repeated from
source data.
To facilitate building re-usable scale mediators, the ScaleMediator abstract
parent class contains a SubjectObservation type which is used to store each
node of agent-state information. This is a base type intended to be extended
in subclasses of ScaleMediator to contain a member field intermediateRep-
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resentation, used to store any intermediate vector representation necessary
to support the specific scale mediation strategy. Re-computing a new scale
after a cache has already been primed will incur only the cost of re-rendering
the vector representation into the desired scale. Put simply, this cached inter-
mediate result is part of what other scale mediation strategies actually do: at
their heart they are just mechanisms to generate a continuous representation
of the underlying properties. The final step of rendering this representation
into a discrete scale is trivial and is essentially the same across all mediation
strategies. We take advantage of this fact and of the fact that the continuous
representation is cacheable.
Also included in ScaleMediator is a spatial index which uses the R-Tree data
structure to facilitate spatial searching and overlap detection [20]. Its use is
demonstrated in the ScaleMediatorOversampling subclass (still incomplete
at the time of writing). To mediate from scaleA to scale B, random points are
generated within an extent of scale B, and those points are then superimposed
upon scale A using the spatial index. This superimposition accomplished by
searching the R-Tree of scale A for the coordinates of each point. Other
scale mediation strategies will make use of spatial and other dimensional
indexing, and R-Trees can adapt to arbitrary dimensions, so this spatial index
was placed in the abstract parent class ScaleMediator.

Output Caches

When multiple observers observe a single subject, it is a common occurrence
that they operate at the same scale; it is therefore best to cache results gener-
ated by mediators in a way that is accessible by other observers. This cache
can take the standard form of f : Signature→ Result where Signature is a
unique description of the function call by the requesting agent, and Result is
the result returned by that function call.
It is anticipated that these caches will become too large to store in RAM for
the duration of a complex simulation; a flushing mechanism based on storage
size, staleness, or the time values of the current observation tasks will be
designed to address this problem.

5.2.2 Multivariate Scale Mediation Strategies (d-Dimensional)

Many interpolation techniques in the image processing canon are applicable
to arbitrary dimensions. This allows these techniques to be applied to the
problem of integrating multiple scales for arbitrary modeling tasks where
then number of dimensions is not known a priori. Some techniques borrowed
from the image processing domain are limited to two dimensions. A general
modeling platform should ideally feature more flexibility than this, so they
are not included here. They could be added to Thinklab using this same API
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under special conditions if deemed useful by a developer.
There are also many existing geospatial interpolation techniques (e.g. Krig-
ing [34]), but even so, these algorithms might not be the best fit for our
problem space, because the problem as we experience it is not that our data
set lacks samples (as for example in the sparsity of high-altitude weather sta-
tions in the French Alps). Rather,the measured data is of a granularity which
is incompatible with an observer. Our problem lies much closer to that of ef-
fective image re-sampling than to geospatial interpolation, despite the latter
having been the primary domain in which Thinklab has been used so far.
Still, the rich field of geostatistical techniques can be mined for input into the
domain-aware areas that we are developing. Specifically, the Application-
Specific Approaches from Section 2.3.4 allow for domain knowledge to be
applied as a final step so that vectors are selected from among many possibil-
ities, and smoothed appropriately.
Java’s Advanced Imaging (JAI) Library is the foremost candidate for gen-
eral image manipulation and re-sampling [45]. It was considered as a refer-
ence implementation for some interpolation functions, given its stability, ef-
ficiency, and Open Source code base which could be re-used within Thinklab.
But although the algorithms it implements are able to scale to d-dimensions
its API is tightly locked into a two-dimensional world. For this reason, it can-
not be used in its native state, although the option exists to closely mimic its
data structures so as to re-use some of the code or optimizations contained in
it.
This problem is true of most Java implementations of image manipulation
algorithms. Java AWT, for instance, also contains many out-of-the-box resiz-
ing tools, but it is even more embedded semantically into its niche (creating
user interfaces and displaying images) [60].

5.3 Subjective Agent Perception

We do not anticipate the development of perception filters to pose any se-
rious challenge, but our proof of concept did not require their use. Their
implementation will be a simple task of creating a callback structure within
the observation process, in which agents can define filter objects. The filter
objects will do no scale mediation and will have relatively loose constraints
placed on their behavior. They will simply take IState values as parameters
and produce filtered IState values. We have left this for future work.

71



Chapter 5: Implementation

5.4 Execution Model

In this section we describe the implementation of the execution model design
outlined in Section 4.4.
Because the proof of concept was written in a single-threaded style, there
was no need for the use of future values, as mentioned in Section 4.4.5. The
code already includes multi-threaded capabilities which were not tested, and
incorporating future values into the multi-threaded code will be a simple
matter of replacing the current command Thread.sleep() with a future of
the value requested, which internally will call Thread.sleep() if it enters its
blocking code path and no value is available.

5.4.1 Circular References

No special treatment was given for circular references beyond the use of
exclusive-inclusive temporal semantics, whose implementation is described
in 5.1.5. Atemporal simulations and the instantaneous initialization proce-
dure which had already been a part of Thinklab had already had circular ref-
erence detection and avoidance mechanisms built-in, so the only challenge in
this work was to avoid circular references at run-time for temporally dynamic
simulations. Because exclusive-inclusive semantics provided this solution, no
further work was needed.

5.4.2 Observation

We built a single-threaded proof of concept for this project, but the observa-
tion system is designed to allow multi-threaded execution (Figure 5.4). For
each observation cycle, a worker thread pulls a task from the observation
queue by requesting it from the observation controller, performs the task,
and returns the result by calling ObservationController.setResult(task,
result).
The controller processes the result by storing a new agent-state in a causal
observation graph (Figure 5.5), a graph structure indicating causality relation-
ships. The observation graph records both causal relationships which repre-
sent how agent-states were created, and influential relationships which indi-
cate how agent-states influence each other during observation.
The controller also maintains a simple task queue organizing the observation
tasks by the order in which they must be processed. As tasks are pulled
from the queue and given to worker threads for processing, they are added
to a collection of currently processing tasks. This will allow a multi-threaded
version of the system to detect and mitigate a task execution failure, and also
allows tasks to be invalidated while they are being processed (see Section

72



Chapter 5: Implementation

Observation Controller

Current Tasks

Observation Graph

Indices & Metadata

Thread/Network Boundary

Task Queue

Observation Workers

task = controller.
result = task.run(controller);
controller.

getNext();

setResult(task, result);

Figure 5.4: The observation system is composed of a single-threaded controller plus
worker threads which perform the observation tasks
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Figure 5.5: Observation graph used for storing agent-states and their relationships
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Figure 5.6: Collision detection is done for all overlapping time periods

5.4.3). Finally, the controller stores metadata about each agent and indices
for navigating between agents, tasks, and agent-states.

5.4.3 Collision Detection and Invalidation

Collision detection is a loose term we use to describe computing when agents
interact with each other outside their normal observations, decisions, and
agent-state changes. Collision detection is done using ObservationTaskCol-
lisionDetection tasks, which are generated by ObservationController
.setResult() after a normal observation task has been completed.
Because collisions may affect previously created agent-states, the IObserva-
tionController and IScaleMediator interfaces have an invalidation mech-
anism to maintain accurate, temporally synchronous states and caches.
Collisions are not restricted to be physical in nature (as is the case in most
literature, generally in the context of video games, interactive animations,
or physics-based simulations). Collisions can happen as a result of active
decisions by agents, for example in message passing; collision detection refers
to the detection of inadvertent interruptions which are not an explicit act of
an agent.

Collision Detection

Collision detection is done by specialized task objects (instances of Observa-
tionTaskCollisionDetection) which are created at the conclusion of every
agent-state observation task. The controller iterates through all overlapping
agent-states and creates one collision detection task for each pair of agent-
states (Figure 5.6). These tasks are executed by worker threads in the same
manner as general observation tasks. If any collision detection task results
in a collision, the ObservationTaskCollisionDetection object calls Obser-
vationController.collide(node1, node2, collision), where node1 and
node2 refer to nodes in the temporal causal graph maintained by the obser-
vation controller.
In ObservationController.collide(), the controller asks each agent to de-
termine whether or not the collision affects it. Both agents for every over-
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Figure 5.7: Invalidation of observation results during collision detection

lapping pair are interrogated; this is because they belong to different types
and may use different logic to determine whether collisions are important.
One agent may be inanimate with respect to collisions (such as a water table
model) and therefore always return false, whereas an agent interacting with
it may return true, for instance if an agent falls into a well and hits the water
as a result of the water level reported by the water table agent.
The proof of concept we created does not implement the various collision
detection algorithms or criteria. We have created the detection, invalidation,
and handling procedure outlined here, but the actual work of detecting col-
lisions is beyond the scope of this project. We believe that the API is a good
interface for collision detection logic, as it provides a simple callback mech-
anism where detection algorithms can be introduced.
The field of collision detection is broad, even the problem is stated differ-
ently in different contexts. For each form of the problem, many strategic
approaches exist [30]. But even these physics-based definitions are more
restricted than our collision detection system, because we leave the possibil-
ity of abstractly-defined collisions open. Concrete collisions may represent
a loud noise that disturbs an agent, a flash in the background of an agent’s
visual field, unexpected distortion from a static-electric field, etc. For now,
we leave our API intact with the possibility to expand via standard collision
detection strategies as well as any domain-specific collision detection that
may be appropriate.

Agent-State and Task Invalidation

The observation graph supports invalidating previously made observations
through a time-based invalidation procedure (Figure 5.7). If an agent reports
that a collision results from two agent-states, then each agent involved in the
collision is asked whether or not the collision affects its agent-state. If an
agent responds with true, then the invalidation procedure is triggered.
Observation tasks maintain a causal relationship with the agent-states that
initiated them. For instance, an agent a which remains alive beyond agent-
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state at creates an observation task to observe agent-state at+1. In this way,
when a collision invalidates an agent-state in the observation graph, any sub-
sequent observation tasks which resulted from the invalidated portions of
agent-states are also invalidated.
The observation graph treats causal and influential relationships differently.
An example is a child who goes to a certain school for some period of time:
if by processing a collision, the simulation determines that the school never
existed, then the child would be updated to go to a different school. But if it
is determined that the child’s parents never existed, then the child would be
deleted from the simulation. The differences in the handling procedures are
explained below.
The collision is reported to the observation graph, along with the affected
agent-state. The observation graph shortens the agent-state so that it ends at
the collision time, and also determines which other agent-states had a causal
(as opposed to influential) dependency on the portion of the original agent-
state which has now become invalid. This is done by examining all causal
links in the graph which originate at the agent-state being invalidated; any of
the dependent agent-states which begin after the collision time are removed
from the graph. This is done in a recursive manner, so that any states which
are in turn causally dependent on the ones being deleted are also deleted.
Influential relationships are treated differently. Any agent-states in the graph
which have an influential dependence on an agent-state which is invalidated
must be re-evaluated, rather than deleted. To accomplish this, a mapping
between each agent-state and the observation task which led to its observa-
tion is kept by the observation controller. A task can be re-executed at any
time by querying this map for the agent-state which must be re-evaluated.
Executing the task is as simple as re-adding it to the observation queue.
Once the agent-states have been shortened and the invalid dependents re-
moved, a new collision handling observation task is created so that the agent
can decide how to handle the collision. This task contains a reference to the
collision object.
Invalidating observations which have been queued but not yet observed is
done by setting a flag on the observation task object. If the next task from
the observation queue retrieved by the observation controller has been inval-
idated by a collision, the task is discarded and the next task is retrieved from
the queue. If a result is returned to the observation controller whose original
task object has been invalidated, the result is discarded.
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In this thesis we have presented a novel way of decoupling the particular
scale at which agents operate from the simulation system and from the scales
of other agents with which they interact. During the course of our work, the
unique characteristics of time have compelled us to give it special treatment,
and even to hard-code some of its unique characteristics directly into our
reference implementation, which has not been necessary for space or for other
dimensions.
The library that we have generated could also be a generalized platform for
adding raw data processing (e.g. Kriging) techniques into a system, such
that field data can be used directly without any pre-processing. The pre-
processing and data cleansing algorithms operate under the same assump-
tions and share the same task as our own Scale Mediators: generating data
sets in a specific scale based on some data source values that potentially adopt
a different scale.
Extending a system to include this level of data processing would allow e.g.
ecosystem modelers to work more efficiently, speeding up the job of ecosys-
tem simulation. It is possible that this type of update would require metadata,
including for example estimates of any loss of accuracy due to scaling, to be
generated in addition to the raw data output – a simple enough modification
to make in our Scale Mediator API.

6.1 Future Work

Throughout this thesis we have mentioned areas that deserve further explo-
ration. Here we revisit them as a guide for other researchers as well as to
hint at our own upcoming development efforts.
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6.1.1 Collision Detection

We have not yet incorporated any collision detection algorithms into our
code. The collision detection system exists, and collisions can be explicitly
created if desired, but no agents have yet been designed to detect collisions
in real time. Using the RTree class which is already used for spatio-temporal
indexing in the ScaleMediator class would allow agents to provide collision
detection relatively easily; a global RTree instance would probably suffice.
Still, this functionality was not needed for our proof of concept. Many colli-
sion detection techniques and algorithms already exist, and we have designed
our API in a way that should conveniently interface with pre-existing code.

6.1.2 Other Interpolators

Our proof of concept included only a single scale mediation mechanism,
which was adapted from the “oversampling” image interpolation strategy.
Many other strategies exist, some of which were mentioned in this thesis.
Their implementations should be straightforward, and in many cases pre-
existing libraries will exist that can be adapted to Thinklab. However, many
pre-existing libraries are highly focused on specific domains of application,
and may require rewriting if they are to work with another platform or with
arbitrary scales or dimensions. Java’s Advanced Imaging library, for instance,
is well established but would require significant work for the algorithms to
be adapted (see Section 5.2.2).

6.1.3 Intermediate Representation and Differential Transitions

Because the proof of concept includes an interpolator based on the oversam-
pling technique, and because oversampling does not require an intermediate
representation, this technique was not implemented during this project. The
mechanisms do exist, as outlined in Section 4.2.2, but no scale mediators
have yet been developed which take advantage of this feature.
When implementing this feature, it will also be advantageous to implement
the differential transition mechanism in the ITransition interface. Eventu-
ally, ITransition will support methods to dynamically update pre-existing
cached data rather than replacing it with newly generated data. This will
improve the scalability and accuracy of the results delivered to agents at dif-
ferent scales. This approach is described in Section 5.1.4. Applying transition
differentials to vector representations of objects is much more accurate than
doing so through discretized representations of those objects, and applying
differentials to either type of representation is generally more efficient than
re-computing results from scratch.
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6.1.4 Optimization by Skipping Observations

In section 4.4.5 we mentioned that we cannot take shortcuts by skipping
observation times where agents decide to be inactive. However, it is not
difficult to imagine that we could detect cases where observations could be
skipped, and postpone the appropriate observation task in the Observation
Controller until the next observation time. This undertaking would include
two tasks: identifying the scenarios under which observation tasks could be
delayed, and implementing the mechanism by which they are delayed. The
first will most likely result from using the system and paying attention to the
patterns of high resource usage by agent type, and the second will be trivial
once progress has been made on the first.

6.1.5 TQL Language Changes

For the proof of concept, we created test cases using JUnit 4.0 and a Model-
Proxy object to drive the resolution and observation processes. By doing so,
we were able to avoid the need to update the TQL language with all necessary
features. Most were updated (the models we used in our tests were defined
in TQL) but we did not implement a way of defining ontology-driven scale
mediator selection processes or unbounded temporal scales. A rough outline
of the scale mediator selection syntax has been started at the model level,
but this syntax needs to be fully defined, implemented, and updated so that
it relates to ontological concepts rather than directly to models. Unbounded
temporal scales do not present any technical challenge; our proof of concept
did not strictly require them so they were not prioritized for.

6.1.6 Deliberate Simplifications

Many deliberate simplifications were mentioned in Section 3.5. In cases
where a more highly tunable or domain-specific application is needed, some
of these limitations may need to be addressed. The most likely candidate
is our current treatment of four-dimensional space and time as the limiting
bounds of reality; although this is not a hard limitation, we have not yet
tested Thinklab beyond this usage model.
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Glossary

agent Possibly the most important term in this thesis, agent refers to a be-
ing in the real world which is able to interact with the world. Some
agents are simply observed phenomena, such as a message being passed
from one agent to another. This message agent cannot reason or make
decisions. It may be passed electronically and wirelessly and have no
physical manifestation at all, and its temporal duration may be so small
that no agent in the simulation can measure it. Still, because a message
can interact with the world, it is considered an agent. Other agents may
include weather patterns, vegetation growth, soil quality, family units,
larger population groups, governments, etc..

agent-state One segment of time in the life of an agent. Agents’ lifetimes
are segmented by decision times; between decision times, their state
functions do not change. These time periods are called agent-states..

collision A general term we use to refer to changes forced upon agents in the
system which are not a result of their own internal decisions. Collisions
are not necessarily physical impacts (or even physical at all); the term is
a reference to the field of collision detection, which is the closest related
field from which we can draw inspiration. Collisions include deliberate
interruptions such as messages being sent from one agent to another..

observation The most important act that happens in the system is that of
observation. Thinklab is a semantic meta-modeling system composed
of agents which observe each other over the course of a simulation. In
the context of observation, the observing agent is known as an observer;
the subject of the observation is known as the subject..

observation time At each time step of an agent’s Subjective Time Scale, any
agent which is a Decision Maker Agent (see Section 2.1.3) will have the
choice to make a decision. It may be the case that the decision leads to
no action, but that is up to the agent itself; the system will trigger the
appropriate decision making procedure on an agent at every one of the
agent’s internal time steps.

perception In Thinklab, an agent is considered to exist in a complete, syn-
chronous, real world, and agents are given full access to all observable
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properties. An agent is free to internally filter the properties so as to
create a limited Perception of the world around it. Example: Say a moun-
taineer agent and a full three-dimensional mountain model exist in a
Thinklab simulation. At runtime, the mountaineer agent will be given
the three-dimensional mountain model, but after applying internal fil-
ters, the agent experiences only a two-dimensional visual image of the
mountain, which is appropriate for a human which sees in the visible
spectrum. This visual image is its internal perception of the mountain.

root subject The primary observable agent in a simulation, for which all
dependent observations are generated.

scale mediator Scale mediators are the objects in Thinklab which allow ob-
servations to occur between agents whose views of space and time differ.
Agents may observe space as a series of grid cells, polygons, points, etc.
and they will generate observable phenomena according to their sub-
jective views. Other agents are able to observe these phenomena by
employing scale mediators during observation..

state distribution function a probabilistic distribution over all state func-
tions which could be expressed by a subject agent during one time pe-
riod according to the subject agent’s subjective internal time scale.

subject An agent which is being observed in the context of the discussion.
Example: Soil quality which is measured by a farmer on a periodic basis
is a Subject.

subjective scale A view of space and/or time according to an agent’s subjec-
tive experience of the world. Example: An agent representing an animal
which hibernates may have time steps totally different from one who
does not; these would have differing subjective scales..
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