
J. Luke Scott
Mobile Computing

MiCS Program
University of Luxembourg

Mobile App Project
Monday 4th June, 2012

BONK! – Final Summary

1 Introduction

Our game, BONK!, is a simple multi-player target
shooting game, reminiscent of classic 2D arcade
games but with a newer, quick-game-play mobile
app feel. It was designed to be a quick diversion
among friends with a few minutes to kill (or to
BONK!).

During implementation, our original designs for
this game proved to be very effective. Only a few
details or our plans showed themselves to be un-
tenable. And for my implementation, I chose the
name BONK! (instead of Slam!). But because of
the challenges of writing code while learning new
libraries, and because of the odd behavior that
always happens with young, cutting-edge plat-
forms, some buggy behaviors were very hard to
pin down and development was slow. Not all fea-
tures were implemented, but the proof of concept
that has been created does show a good level of
functionality. The remaining work to do is fairly
straightforward.

2 Graphical User Interface

The Graphical User Interface (GUI) uses the An-
droid platform’s standard View objects; other
animation strategies exist, for instance using
a “Drawable” object to insert custom-generated
bitmaps. But for the relatively small number of
animated objects on the screen, and because of the

Figure 1: Main entry screen

Figure 2: Players firing bullets in direct view (up-
per half) and network view (lower half)

good match between API calls and what our pro-
gram requires, I chose to use Views for the players,
target, blocks and bullets.

2.1 Animation

The bullets are animated with “Animator” and
“AnimatorSet” objects. Because bullet motion is
defined by its trajectory and its rebounds off of the
walls, using AnimatorSet objects in the Android
environment is suited perfectly.

An object trajectory can be split into its travel seg-
ments; one segment represents the path traveled

1



Figure 3: Storyboard of BONK! User Interface

between two walls. In this way, a bullet that is
fired, bounces four times, and then hits a target
(or burns out) could be said to have five travel
segments. But I chose to represent x-axis travel
separately from y-axis travel. Each rebound off of
a wall hits either a vertical wall (reversing the x-
axis direction) or a horizontal wall (reversing the
y-axis direction), so by separating the axes I could
consider travel segments to be the path between
rebounds on a single dimension. By doing this,
calculations are much simpler, and I discovered
an added benefit that the path of travel is a bit
goofy and unpredictable – adding to the silly feel
of playing the game.

To calculate the travel segments, BONK! first takes
the direction, speed and remaining lifetime of the
bullet, and by doing some simple geometry, it cal-
culates the remaining x- and y-travel distances.
Each axis of travel is considered separately. Start-
ing with the current position of the bullet, the dis-
tance and time until the next rebound on an axis
is calculated. An animation segment for just this
axis segment is generated, and the distance and
time is subtracted from the remaining values.

Before repeating the process, the “remaining dis-
tance” value is multiplied by −1 so that the next
calculation will cause the bullet to travel in the
reverse direction for that axis. Also, the direction
of the projectile is set to flip over the appropri-
ate axis by adding an AnimationListener which is
triggered at the end of each animation segment

and calls setRotation() on the bullet. Then the
generator function calls itself recursively and the
process repeats until no more distance is remain-
ing to travel.

Then the other axis is calculated in the same way,
and the two axes are added together in a paral-
lel series using an AnimatorSet object. By playing
this single AnimatorSet on the bullet, the Android
system does all the work of animating the bullet
using its standard View objects.

As the device gets updates over the network of
current bullet positions, it removes the existing
AnimatorSets from the bullets being updated and
re-generates them based on the received time, po-
sition and direction data.

3 Protocol

Only insignificant changes were made to our pro-
tocol. One bug was found and fixed (the play-
ground initiation JSON structure did not have a
messageType field), and the name of the applica-
tion was changed from Slam! to BONK! – forcing
the “application” field of the invitation and accep-
tance messages to be changed.

Also, for simplicity, in the demo application, only
UDP communication is used. For the full imple-
mentation, we still planned on using direct TCP
communication because of its reliability guaran-
tee. TCP is a slightly more heavyweight protocol
than UDP – sending an acknowledgment packet
with each received communication packet – but
our application’s message protocol is already ex-
tremely lightweight and is not expected to satu-
rate network capacity. Because the overhead in-
curred in TCP communication happens after the
message is delivered, liveness is not expected to
depend on this decision at all.

3.1 Lightweight Communication

Our application uses an extremely efficient, fine-
tuned, low level protocol for sending game ac-
tions between devices. Bit-level values are con-

2



Figure 4: Application Components

sidered; three bits represent the “owners” of ob-
jects (either the players or the game itself), and 13
bits are used to represent the other objects owned
by them. Positions are represented in a [0,255]
range, so a two-byte combination can be used for a
2D location. Similarly, the direction of a player or
a player’s projectile is communicated using a sin-
gle byte. These efficiencies allow the entire game
state (up to over 100 objects) to be guaranteed
communicable in a single packet.

4 Architecture

The application is implemented using a com-
mon Activity parent class for all BONK! activi-
ties. This common Activity contains some view
helper functions, start-up code to process its pa-
rameters (from the Android Intent), and to ini-
tialize network communication. (See Figure 4.)

All network communication is done using
a NetworkCommunicator object hierar-
chy. NetworkCommunicator is a subclass
of Java’s Thread class, so they each run in
their own thread of execution and communicate
via Android’s Handler messaging mecha-
nism. The child classes, NetworkSender
and NetworkListener, handle all low
level communication functionality, expos-
ing only a few sending/receiving methods.
listener.getHandler().sendMessage() is
the method used to send a message in BONK!;
at the time of writing, minor development

was planned to convert it to a static API sim-
ilar to that used in NetworkListener. The
static version of this call would simply be
NetworkSender.sendUdpByteString(), and
would hide the threaded/message-based nature
of this component.

The technique for listening for messages is to
use NetworkListener.registerHandler()
to register a callback on the BonkActivity
object. This is done during start-up in the base
BonkActivity class, and the callback event is
wrapped into a more convenient hook mecha-
nism. The various subclasses of BonkActivity
only need to implement one of a few hooks
used by this callback to relay game invitation,
acceptance, setup and game play messages.

All game play is marshaled by a Game class.
Each instantiation of Game is its own separate en-
vironment of players, objects, and game state.
Although an admittedly confusing naming deci-
sion, a Game object stores a hash map of many
GameObject subclasses, which are the objects be-
ing manipulated while playing the game. The
Game class exposes simple gameplay-related com-
mands like rotatePlayer() fireBullet(), etc., and it
triggers re-drawing objects on the screen and com-
municating with the other devices.

Each Game object contains its own Playground,
which is a BONK!-specific Android Layout. A
Playground is the parent of one Android View
object for each GameObject in the Game object’s
canonical hash map.

Game initialization is currently done with a test
button because the host/join screens have not yet
been finished. In the final product, the host de-
vice would generate a random arrangement of
target, players, and blocks, and send it over the
network to the other players in a JSON mes-
sage. The JSON message is interpreted by the
PlayGameActivity, which calls the appropri-
ate commands on its Game object to set up its
Playground.

3



5 Implementation Challenges

During development, two platform issues came up
and one theoretical challenge. The platform is-
sues were normal (expected) events that happen
when developing in a new environment: network
communication (and more generally, threaded
I/O), and undocumented quirky behaviors within
the platform libraries.

5.1 Animation Engine Issues

To get the animation engine design to where it is
now, I went in two large circles. I actually started
with this idea very soon after reading the Android
animation documentation. Putting the Animator
and AnimatorSet ideas together, it was obvious to
me that dividing the x and y axis would simplify
the code quite a bit. But because of (still not un-
derstood) issues with a setRotation() wrapper
that I had been using, objects were being rotated
out of their range of drawability during the course
of the animation. They would flicker a bit and
then magically appear at the end of their trajecto-
ries. The only fixes I could find were to introduce
hacks that forced the animation engine to re-draw
constantly – not a scalable or elegant solution at
all.

Along the way, I implemented an idea to do
a single animation at a time, each of which
used a listener to create the next animation,
effectively writing my own AnimatorSet (this
only changed the problem). Another attempt
was to bypass the ObjectAnimator and use
Animation and AnimationSet objects instead;
I also considered using the more video-friendly
Canvas/Drawable system, and even OpenGL. I
wrote some test code for each solution and stub-
bornly stuck with ObjectAnimator because it
fits the requirements so well. I performed lower
and lower level testing until I found the rotation
quirk. Finally, I wrapped all animation code into
a BonkAnimator object; each animated game ob-
ject (currently just Bullets) keeps a handle to a
BonkAnimator to do all animation tasks (and to
keep animation data in one known place, so that

Figure 5: Timer synchronization algorithm

it can be updated later).

5.2 Network Communication

Testing any kind of real network communication
was difficult. The device given to me would not
accept my .apk files, and running two simulators
on my laptop brought all UI responsiveness to a
halt. In even simple tests, the Android emulator
would not deliver communication between two
simulated devices.

Instead, I chose to implement everything up to
the network boundary, and then simulate two
players’ screens on one device. In the layout
for PlayGameActivity, I created two separate
Playground views – one to show the direct
response of the game view and one to show
what has been sent and received through the
NetworkCommunicator objects. As Figure 2
shows, this second view is effective in illustrating
the network lag between the initial event of a user
pushing a button to fire a bullet and that bullet ap-
pearing on the screen of another player.

This is exactly why we had decided to use the
time synchronization system explained in our de-
sign document, and pictured in Figure 5. Be-
cause network communication was never done,
this synchronization could not be tested. The next
planned stage of development in this area was
to experiment with a “general” time offset which
could be shown in the networked game play view.
Instead of setting an offset based on actual mea-
sured network lag, the offset would be set to zero
because each playground is using the same system
clock by which to synchronize its animations.

Because the actual Java UDP libraries were being
called to send and receive network communica-
tion, these tests were very close to actual behavior,
in the sense that almost no code would be changed

4



if given a test environment in which devices could
communicate with each other.

5.3 Collision Detection

Initially we had planned on simplifying the task
of detecting collisions by using a 10 × 10 grid (or
possibly 16 × 16, for a total of 256 cells) to group
objects on the playground. Any time two objects
occupied the same cell, they would be considered
to have collided. But after digging into this a bit,
I realized that the cell does simplify the numerical
units involved, but does not solve the inherently
hard task of detecting collisions between many ob-
jects in an environment.

I had originally planned on using an a-priori or-
dered bounding-box algorithm for detecting colli-
sions, such that the device whose user fires a bul-
let does an initial projection of whether (and when
and where) the bullet would hit anything. The
reason for doing a-priori calculations is that, dur-
ing the construction of the AnimatorSet, many
trajectory calculations and predictions are already
being made; intuitively, I think that the additional
work of collision detection should be less at this
time than at any other time.

Over time, I went back to the 16× 16 cell idea, but
with one improvement. If using just a single grid
of cells, collisions could be missed if two objects
were close enough to collide but the objects’ cen-
ters were actually in neighboring cells. A potential
improvement to this would be to use two overlap-
ping grids of cells, with a half-cell offset in each di-
rection. That way, if two objects’ positions strad-
dled a cell boundary in the first grid, then they
should be in the same cell the second grid. But
still, a situation may occur in which two objects
were in opposing corners of the combined grids,
as in part (a) of Figure 6. The simple solution is to
add a third grid: in part (b), we see that this leaves
no possibility of objects colliding without sharing
at least one cell of one of the three grids. (More
abstractly, we would need d+ 1 grids, where d is
the number of dimensions we are dealing with.)

Now we can see how the cells pay off in size: my
collision detection algorithm would pre-emptively

Figure 6: Collision detection using (a) two or (b)
three overlaid grids

Figure 7: Collision Registry data structure

log every object at every time interval in a colli-
sion registry queue (Figure 7), with one element
for every s-second time interval. Each time inter-
val would be linked to three 16 × 16 grids; be-
cause each grid has 256 cells, a one-dimensional
256-item array can be used. Each item in the ar-
ray is initialized at null (indicating no objects or
collisions in that cell at that time), and as the ob-
jects are animated, they are registered in all ap-
propriate cells at all appropriate times. If there is
already an object in a cell being set, then that ob-
ject and the one being animated are both added to
a new Collision object, and this object replaces
the original game object that had been there. The
Collision object would also then be added to
the time node for quicker access when the col-
lision handling thread reads it. If a third object
collides with them, it can simply be added to the
Collision object’s list of colliding objects at that
time.

Once the collision registry has been populated,
the time intervals are popped off the front of the
queue by a separate collision handling thread, and
if any collisions are found, it removes the col-
liding objects from the playground and creates a
new collision or explosion animation. Also, col-

5



lision events are communicated to the other de-
vices, and if the collision results in the end of the
game by a bullet hitting the target, the other de-
vices will detect this automatically.

This queue would have time-indexed root nodes
pushed on and popped off as needed. It would
only need to be large enough to store the longest-
living moving object – probably around five sec-
onds.

Using the default time interval of 0.1 seconds
(this is the interval used by the game timer), a
five-second time period would require creating
5 × 10 = 50 time-indexed entries for a total of
50 × 3 × 255 = 38, 250 individual cells. Because
these are arrays the memory must be pre-allocated
even if they are storing mostly null values. In
a four-byte addressing system, this data structure
at its largest would use a total of 38, 250 × 4 =

153, 000 bytes of object pointers.

6 Conclusion

I really enjoyed doing this project and found many
challenges I did not expect. I only wish that I had
had time to work on it more!

6


